EEG-based mental workload estimation using deep BLSTM-LSTM network and evolutionary algorithm

人类多任务处理 工作量 计算机科学 粒子群优化 任务(项目管理) 人工神经网络 遗传算法 人工智能 脑-机接口 脑电图 机器学习 工程类 认知心理学 系统工程 精神科 操作系统 心理学
作者
Debashis Das Chakladar,Shubhashis Dey,Partha Pratim Roy,Debi Prosad Dogra
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:60: 101989-101989 被引量:136
标识
DOI:10.1016/j.bspc.2020.101989
摘要

The mental workload can be estimated by monitoring different mental states from neural activity. The spectral power of EEG and Event-Related Potentials (ERPs) are the two mediums for monitoring the mental states. In this paper, we estimate the workload during the multitasking mental activities of human subjects. The estimation of mental workload is done using the “STEW” dataset [16]. The dataset consists of two tasks, namely “No task” and “simultaneous capacity (SIMKAP)-based multitasking activity”. Different workload levels of two tasks have been estimated using the composite framework consists of Grey Wolf Optimizer (GWO) and deep neural network. GWO has been used to select optimized features related to mental activities. Other optimization techniques such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO) are generally slower compared to the convergence rate of GWO. A deep hybrid model based on Bidirectional Long Short-Term Memory (BLSTM) and Long Short-Term Memory (LSTM) has been proposed for the classification of workload levels. The proposed deep model achieves 86.33% and 82.57% classification accuracy for “No task” and “SIMKAP-based multitasking activity,” respectively. A judicious distinction between different workload levels at higher accuracy will essentially increase the performance of an operator, which effectively improves the efficiency of the Brain-Computer Interface (BCI) systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦发卡发布了新的文献求助10
刚刚
刚刚
1秒前
Owen应助雪白元槐采纳,获得10
1秒前
1秒前
小玉发布了新的文献求助10
2秒前
晶晶发布了新的文献求助10
3秒前
Jasper应助liuxiaomeng采纳,获得10
3秒前
3秒前
3秒前
流体离子发电机完成签到,获得积分10
4秒前
CQMZY_2025完成签到,获得积分10
4秒前
aaa北大街发布了新的文献求助10
4秒前
成就迎梅完成签到,获得积分10
4秒前
ly613发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
陆仓颉完成签到,获得积分10
5秒前
共享精神应助yyan采纳,获得10
5秒前
可爱的函函应助myc采纳,获得10
6秒前
眼睛大书桃完成签到,获得积分10
6秒前
ppp发布了新的文献求助10
7秒前
7秒前
我是老大应助喜悦发卡采纳,获得10
7秒前
在水一方应助怡然之玉采纳,获得10
7秒前
8秒前
zhouzhou完成签到,获得积分10
8秒前
汉堡包应助夏cai采纳,获得10
10秒前
杨德凯完成签到,获得积分10
10秒前
10秒前
健壮鸡翅完成签到,获得积分10
10秒前
10秒前
科研通AI6应助无限灵竹采纳,获得10
11秒前
11秒前
清爽的青丝完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
斯文败类应助懵懂的采梦采纳,获得30
13秒前
13秒前
赘婿应助LNE采纳,获得10
14秒前
彭于晏应助小玉采纳,获得10
15秒前
zm完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5709188
求助须知:如何正确求助?哪些是违规求助? 5193261
关于积分的说明 15256131
捐赠科研通 4861993
什么是DOI,文献DOI怎么找? 2609827
邀请新用户注册赠送积分活动 1560233
关于科研通互助平台的介绍 1517986