Machine Learning to Predict Stent Restenosis Based on Daily Demographic, Clinical, and Angiographic Characteristics

医学 内科学 心脏病学 再狭窄 支架
作者
Jesús Sampedro-Gómez,P. Ignacio Dorado-Díaz,Víctor Vicente-Palacios,Antonio Sánchez-Puente,Manuel F. Jiménez‐Navarro,José Alberto San Román,Purificación Galindo‐Villardón,Pedro L. Sánchez,Francisco Fernández‐Avilés
出处
期刊:Canadian Journal of Cardiology [Elsevier]
卷期号:36 (10): 1624-1632 被引量:45
标识
DOI:10.1016/j.cjca.2020.01.027
摘要

Background Machine learning (ML) has arrived in medicine to deliver individually adapted medical care. This study sought to use ML to discriminate stent restenosis (SR) compared with existing predictive scores of SR. To develop an easily applicable model, we performed our predictions without any additional variables other than those obtained in daily practice. Methods The dataset, obtained from the Grupo de Análisis de la Cardiopatía Isquémica Aguda (GRACIA)-3 trial, consisted of 263 patients with demographic, clinical, and angiographic characteristics; 23 (9%) of them presented with SR at 12 months after stent implantation. A methodology to work with small imbalanced datasets, based in cross-validation and the precision/recall (PR) plots, was used, and state-of-the-art ML classifiers were trained. Results Our best performing model (0.46, area under the PR curve [AUC-PR]) was developed with an extremely randomized trees classifier, which showed better performance than chance alone (0.09 AUC-PR, corresponding to the 9% of patients presenting SR in our dataset) and 3 existing scores; Prevention of Restenosis With Tranilast and its Outcomes (PRESTO)-1 (0.31 AUC-PR), PRESTO-2 (0.27 AUC-PR), and Evaluation of Drug-Eluting Stents and Ischemic Events (EVENT) (0.18 AUC-PR). The most important variables ranked according to their contribution to the predictions were diabetes, ≥2 vessel-coronary disease, post-percutaneous coronary intervention thrombolysis in myocardial infarction (PCI TIMI)-flow, abnormal platelets, post-PCI thrombus, and abnormal cholesterol. To counteract the lack of external validation for our study, we deployed our ML algorithm in an open source calculator, in which the model would stratify patients of high and low risk as an example tool to determine generalizability of prediction models from small imbalanced sample size. Conclusions Applied immediately after stent implantation, a ML model better differentiates those patients who will present with SR over current discriminators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Stone发布了新的文献求助10
刚刚
刚刚
will发布了新的文献求助10
1秒前
1秒前
默默的裘发布了新的文献求助10
1秒前
gsj完成签到 ,获得积分10
1秒前
1秒前
牛市棋手发布了新的文献求助10
2秒前
汩浥发布了新的文献求助10
2秒前
刘宇萌完成签到 ,获得积分10
2秒前
4秒前
4秒前
标致秋尽完成签到,获得积分10
5秒前
搜集达人应助yy采纳,获得30
5秒前
王王的狗子完成签到 ,获得积分0
6秒前
7秒前
研友_VZG7GZ应助紧张的毛衣采纳,获得10
7秒前
7秒前
现代安莲发布了新的文献求助10
7秒前
Japan发布了新的文献求助10
7秒前
小灰灰发布了新的文献求助10
8秒前
学术妙蛙种子完成签到,获得积分10
9秒前
9秒前
虚心梦秋完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
七七完成签到,获得积分10
11秒前
Hada_Guo发布了新的文献求助10
11秒前
11秒前
11秒前
无语的幻天完成签到,获得积分10
11秒前
ni完成签到,获得积分10
12秒前
别不开星发布了新的文献求助10
13秒前
必中完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
舒适的涑完成签到 ,获得积分10
14秒前
ZZ完成签到,获得积分10
14秒前
天天快乐应助Ayn采纳,获得10
14秒前
跳跃寄松发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646269
求助须知:如何正确求助?哪些是违规求助? 4770756
关于积分的说明 15034169
捐赠科研通 4805036
什么是DOI,文献DOI怎么找? 2569371
邀请新用户注册赠送积分活动 1526467
关于科研通互助平台的介绍 1485812