Machine Learning to Predict Stent Restenosis Based on Daily Demographic, Clinical, and Angiographic Characteristics

医学 内科学 心脏病学 再狭窄 支架
作者
Jesús Sampedro-Gómez,P. Ignacio Dorado-Díaz,Víctor Vicente-Palacios,Antonio Sánchez-Puente,Manuel F. Jiménez‐Navarro,José Alberto San Román,Purificación Galindo‐Villardón,Pedro L. Sánchez,Francisco Fernández‐Avilés
出处
期刊:Canadian Journal of Cardiology [Elsevier]
卷期号:36 (10): 1624-1632 被引量:45
标识
DOI:10.1016/j.cjca.2020.01.027
摘要

Background Machine learning (ML) has arrived in medicine to deliver individually adapted medical care. This study sought to use ML to discriminate stent restenosis (SR) compared with existing predictive scores of SR. To develop an easily applicable model, we performed our predictions without any additional variables other than those obtained in daily practice. Methods The dataset, obtained from the Grupo de Análisis de la Cardiopatía Isquémica Aguda (GRACIA)-3 trial, consisted of 263 patients with demographic, clinical, and angiographic characteristics; 23 (9%) of them presented with SR at 12 months after stent implantation. A methodology to work with small imbalanced datasets, based in cross-validation and the precision/recall (PR) plots, was used, and state-of-the-art ML classifiers were trained. Results Our best performing model (0.46, area under the PR curve [AUC-PR]) was developed with an extremely randomized trees classifier, which showed better performance than chance alone (0.09 AUC-PR, corresponding to the 9% of patients presenting SR in our dataset) and 3 existing scores; Prevention of Restenosis With Tranilast and its Outcomes (PRESTO)-1 (0.31 AUC-PR), PRESTO-2 (0.27 AUC-PR), and Evaluation of Drug-Eluting Stents and Ischemic Events (EVENT) (0.18 AUC-PR). The most important variables ranked according to their contribution to the predictions were diabetes, ≥2 vessel-coronary disease, post-percutaneous coronary intervention thrombolysis in myocardial infarction (PCI TIMI)-flow, abnormal platelets, post-PCI thrombus, and abnormal cholesterol. To counteract the lack of external validation for our study, we deployed our ML algorithm in an open source calculator, in which the model would stratify patients of high and low risk as an example tool to determine generalizability of prediction models from small imbalanced sample size. Conclusions Applied immediately after stent implantation, a ML model better differentiates those patients who will present with SR over current discriminators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒羊羊发布了新的文献求助10
刚刚
张飞完成签到 ,获得积分10
1秒前
温柔柜子发布了新的文献求助10
3秒前
kook发布了新的文献求助10
4秒前
彭彭发布了新的文献求助10
4秒前
香蕉觅云应助peiyi采纳,获得10
4秒前
Akim应助fdu_sf采纳,获得10
6秒前
汉堡包应助fdu_sf采纳,获得10
6秒前
深情安青应助fdu_sf采纳,获得10
6秒前
今后应助fdu_sf采纳,获得10
6秒前
小羊羊完成签到,获得积分10
6秒前
科研通AI6应助张诗苑采纳,获得30
7秒前
明镜完成签到,获得积分10
7秒前
温柔柜子完成签到,获得积分10
8秒前
kkkk完成签到,获得积分20
9秒前
10秒前
精明的赛凤完成签到,获得积分10
10秒前
11秒前
JINITAIMEI完成签到,获得积分10
12秒前
哇咔咔发布了新的文献求助20
12秒前
赘婿应助sow采纳,获得10
13秒前
zhonglv7应助VESong采纳,获得10
14秒前
乐乐应助咚巴拉采纳,获得10
14秒前
14秒前
15秒前
Lucas应助kook采纳,获得10
15秒前
15秒前
新伟张完成签到,获得积分10
15秒前
15秒前
爱学习的陈芊芊关注了科研通微信公众号
15秒前
许文静发布了新的文献求助10
15秒前
NGU发布了新的文献求助10
16秒前
idiot发布了新的文献求助10
16秒前
wanci应助科研通管家采纳,获得10
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
求知者1701应助科研通管家采纳,获得10
18秒前
科研通AI6应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
浮游应助科研通管家采纳,获得10
18秒前
bkagyin应助科研通管家采纳,获得10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5288622
求助须知:如何正确求助?哪些是违规求助? 4440454
关于积分的说明 13824620
捐赠科研通 4322732
什么是DOI,文献DOI怎么找? 2372708
邀请新用户注册赠送积分活动 1368140
关于科研通互助平台的介绍 1332034