亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine Learning to Predict Stent Restenosis Based on Daily Demographic, Clinical, and Angiographic Characteristics

医学 内科学 心脏病学 再狭窄 支架
作者
Jesús Sampedro-Gómez,P. Ignacio Dorado-Díaz,Víctor Vicente-Palacios,Antonio Sánchez-Puente,Manuel F. Jiménez‐Navarro,José Alberto San Román,Purificación Galindo‐Villardón,Pedro L. Sánchez,Francisco Fernández‐Avilés
出处
期刊:Canadian Journal of Cardiology [Elsevier BV]
卷期号:36 (10): 1624-1632 被引量:45
标识
DOI:10.1016/j.cjca.2020.01.027
摘要

Background Machine learning (ML) has arrived in medicine to deliver individually adapted medical care. This study sought to use ML to discriminate stent restenosis (SR) compared with existing predictive scores of SR. To develop an easily applicable model, we performed our predictions without any additional variables other than those obtained in daily practice. Methods The dataset, obtained from the Grupo de Análisis de la Cardiopatía Isquémica Aguda (GRACIA)-3 trial, consisted of 263 patients with demographic, clinical, and angiographic characteristics; 23 (9%) of them presented with SR at 12 months after stent implantation. A methodology to work with small imbalanced datasets, based in cross-validation and the precision/recall (PR) plots, was used, and state-of-the-art ML classifiers were trained. Results Our best performing model (0.46, area under the PR curve [AUC-PR]) was developed with an extremely randomized trees classifier, which showed better performance than chance alone (0.09 AUC-PR, corresponding to the 9% of patients presenting SR in our dataset) and 3 existing scores; Prevention of Restenosis With Tranilast and its Outcomes (PRESTO)-1 (0.31 AUC-PR), PRESTO-2 (0.27 AUC-PR), and Evaluation of Drug-Eluting Stents and Ischemic Events (EVENT) (0.18 AUC-PR). The most important variables ranked according to their contribution to the predictions were diabetes, ≥2 vessel-coronary disease, post-percutaneous coronary intervention thrombolysis in myocardial infarction (PCI TIMI)-flow, abnormal platelets, post-PCI thrombus, and abnormal cholesterol. To counteract the lack of external validation for our study, we deployed our ML algorithm in an open source calculator, in which the model would stratify patients of high and low risk as an example tool to determine generalizability of prediction models from small imbalanced sample size. Conclusions Applied immediately after stent implantation, a ML model better differentiates those patients who will present with SR over current discriminators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
5秒前
cqbrain123完成签到,获得积分10
8秒前
sun发布了新的文献求助10
10秒前
噜啦啦完成签到 ,获得积分10
18秒前
tonghau895完成签到 ,获得积分10
25秒前
殷勤的涵梅完成签到 ,获得积分10
31秒前
50秒前
传奇3应助sun采纳,获得10
50秒前
52秒前
56秒前
Boren发布了新的文献求助10
58秒前
sun发布了新的文献求助10
1分钟前
Mtx3098520564完成签到 ,获得积分10
1分钟前
1分钟前
Yini完成签到,获得积分0
1分钟前
2分钟前
2分钟前
alilu发布了新的文献求助10
2分钟前
科研通AI6应助sun采纳,获得10
3分钟前
xiaoleihu完成签到 ,获得积分10
3分钟前
andrele发布了新的文献求助10
3分钟前
3分钟前
Lucas应助safari采纳,获得10
3分钟前
sun发布了新的文献求助10
3分钟前
mmmmm完成签到,获得积分10
3分钟前
4分钟前
RR发布了新的文献求助10
4分钟前
量子星尘发布了新的文献求助150
4分钟前
RR完成签到,获得积分10
4分钟前
Criminology34应助andrele采纳,获得10
4分钟前
CodeCraft应助Marco_hxkq采纳,获得10
4分钟前
吉安娜完成签到 ,获得积分10
4分钟前
天天快乐应助科研通管家采纳,获得10
5分钟前
GingerF应助科研通管家采纳,获得100
5分钟前
5分钟前
Marco_hxkq发布了新的文献求助10
5分钟前
5分钟前
正直的友容完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952327
求助须知:如何正确求助?哪些是违规求助? 4215067
关于积分的说明 13110992
捐赠科研通 3996934
什么是DOI,文献DOI怎么找? 2187720
邀请新用户注册赠送积分活动 1202971
关于科研通互助平台的介绍 1115712