Machine Learning to Predict Stent Restenosis Based on Daily Demographic, Clinical, and Angiographic Characteristics

医学 内科学 心脏病学 再狭窄 支架
作者
Jesús Sampedro-Gómez,P. Ignacio Dorado-Díaz,Víctor Vicente-Palacios,Antonio Sánchez-Puente,Manuel F. Jiménez‐Navarro,José Alberto San Román,Purificación Galindo‐Villardón,Pedro L. Sánchez,Francisco Fernández‐Avilés
出处
期刊:Canadian Journal of Cardiology [Elsevier]
卷期号:36 (10): 1624-1632 被引量:45
标识
DOI:10.1016/j.cjca.2020.01.027
摘要

Background Machine learning (ML) has arrived in medicine to deliver individually adapted medical care. This study sought to use ML to discriminate stent restenosis (SR) compared with existing predictive scores of SR. To develop an easily applicable model, we performed our predictions without any additional variables other than those obtained in daily practice. Methods The dataset, obtained from the Grupo de Análisis de la Cardiopatía Isquémica Aguda (GRACIA)-3 trial, consisted of 263 patients with demographic, clinical, and angiographic characteristics; 23 (9%) of them presented with SR at 12 months after stent implantation. A methodology to work with small imbalanced datasets, based in cross-validation and the precision/recall (PR) plots, was used, and state-of-the-art ML classifiers were trained. Results Our best performing model (0.46, area under the PR curve [AUC-PR]) was developed with an extremely randomized trees classifier, which showed better performance than chance alone (0.09 AUC-PR, corresponding to the 9% of patients presenting SR in our dataset) and 3 existing scores; Prevention of Restenosis With Tranilast and its Outcomes (PRESTO)-1 (0.31 AUC-PR), PRESTO-2 (0.27 AUC-PR), and Evaluation of Drug-Eluting Stents and Ischemic Events (EVENT) (0.18 AUC-PR). The most important variables ranked according to their contribution to the predictions were diabetes, ≥2 vessel-coronary disease, post-percutaneous coronary intervention thrombolysis in myocardial infarction (PCI TIMI)-flow, abnormal platelets, post-PCI thrombus, and abnormal cholesterol. To counteract the lack of external validation for our study, we deployed our ML algorithm in an open source calculator, in which the model would stratify patients of high and low risk as an example tool to determine generalizability of prediction models from small imbalanced sample size. Conclusions Applied immediately after stent implantation, a ML model better differentiates those patients who will present with SR over current discriminators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
www完成签到,获得积分10
刚刚
汉堡包应助阳光的小笼包采纳,获得10
刚刚
蛇從革完成签到,获得积分0
1秒前
小坚果完成签到,获得积分10
1秒前
1秒前
shengdong完成签到,获得积分10
1秒前
Wsyyy完成签到 ,获得积分10
1秒前
Carol完成签到,获得积分10
1秒前
Jared应助Atopos采纳,获得10
2秒前
好好发布了新的文献求助10
2秒前
发发发完成签到,获得积分10
2秒前
3秒前
3秒前
3秒前
3秒前
小鹿儿完成签到,获得积分0
4秒前
猫尔儿完成签到,获得积分10
4秒前
5秒前
5秒前
TaiLongYang完成签到,获得积分20
5秒前
赘婿应助飞云之下采纳,获得10
5秒前
6秒前
和谐飞飞完成签到,获得积分10
7秒前
mmy完成签到,获得积分10
7秒前
7秒前
yangxt-iga发布了新的文献求助10
7秒前
体贴琳完成签到 ,获得积分10
7秒前
小于子88完成签到,获得积分10
7秒前
斯文败类应助vv1223采纳,获得20
8秒前
SciGPT应助不舍天真采纳,获得10
8秒前
8秒前
9秒前
LZCCC完成签到,获得积分10
9秒前
fvsuar完成签到,获得积分10
9秒前
大聪明发布了新的文献求助10
9秒前
Eins完成签到 ,获得积分10
9秒前
丢丢在吗发布了新的文献求助10
9秒前
佳佳发布了新的文献求助10
9秒前
su发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573758
求助须知:如何正确求助?哪些是违规求助? 4660031
关于积分的说明 14727408
捐赠科研通 4599888
什么是DOI,文献DOI怎么找? 2524520
邀请新用户注册赠送积分活动 1494877
关于科研通互助平台的介绍 1464977