Machine Learning to Predict Stent Restenosis Based on Daily Demographic, Clinical, and Angiographic Characteristics

医学 传统PCI 蒂米 内科学 经皮冠状动脉介入治疗 心脏病学 心肌梗塞 再狭窄 冠状动脉疾病 溶栓 曲线下面积 支架
作者
Jesús Sampedro-Gómez,P. Ignacio Dorado-Díaz,Víctor Vicente-Palacios,Antonio Sánchez-Puente,Manuel F. Jiménez-Navarro,José Alberto San Román,Purificación Galindo‐Villardón,Pedro L. Sánchez,Francisco Fernández‐Avilés
出处
期刊:Canadian Journal of Cardiology [Elsevier]
卷期号:36 (10): 1624-1632 被引量:32
标识
DOI:10.1016/j.cjca.2020.01.027
摘要

Background Machine learning (ML) has arrived in medicine to deliver individually adapted medical care. This study sought to use ML to discriminate stent restenosis (SR) compared with existing predictive scores of SR. To develop an easily applicable model, we performed our predictions without any additional variables other than those obtained in daily practice. Methods The dataset, obtained from the Grupo de Análisis de la Cardiopatía Isquémica Aguda (GRACIA)-3 trial, consisted of 263 patients with demographic, clinical, and angiographic characteristics; 23 (9%) of them presented with SR at 12 months after stent implantation. A methodology to work with small imbalanced datasets, based in cross-validation and the precision/recall (PR) plots, was used, and state-of-the-art ML classifiers were trained. Results Our best performing model (0.46, area under the PR curve [AUC-PR]) was developed with an extremely randomized trees classifier, which showed better performance than chance alone (0.09 AUC-PR, corresponding to the 9% of patients presenting SR in our dataset) and 3 existing scores; Prevention of Restenosis With Tranilast and its Outcomes (PRESTO)-1 (0.31 AUC-PR), PRESTO-2 (0.27 AUC-PR), and Evaluation of Drug-Eluting Stents and Ischemic Events (EVENT) (0.18 AUC-PR). The most important variables ranked according to their contribution to the predictions were diabetes, ≥2 vessel-coronary disease, post-percutaneous coronary intervention thrombolysis in myocardial infarction (PCI TIMI)-flow, abnormal platelets, post-PCI thrombus, and abnormal cholesterol. To counteract the lack of external validation for our study, we deployed our ML algorithm in an open source calculator, in which the model would stratify patients of high and low risk as an example tool to determine generalizability of prediction models from small imbalanced sample size. Conclusions Applied immediately after stent implantation, a ML model better differentiates those patients who will present with SR over current discriminators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
励志发顶刊完成签到,获得积分10
刚刚
刚刚
东郭一斩完成签到,获得积分10
刚刚
刚刚
123完成签到,获得积分10
1秒前
博修发布了新的文献求助10
2秒前
4秒前
徐zihao完成签到,获得积分10
4秒前
yjf完成签到,获得积分10
4秒前
suagr发布了新的文献求助10
5秒前
不配.应助完美的海秋采纳,获得80
5秒前
Ashao完成签到,获得积分10
5秒前
9秒前
9秒前
晨晨完成签到 ,获得积分10
11秒前
顺意发布了新的文献求助10
12秒前
Billy应助爱坤坤采纳,获得30
12秒前
张姣姣发布了新的文献求助20
13秒前
n0rthstar发布了新的文献求助10
14秒前
16秒前
manforfull完成签到,获得积分10
16秒前
17秒前
粗犷的书萱完成签到,获得积分20
17秒前
科研通AI2S应助洛神采纳,获得10
18秒前
19秒前
无花果应助n0rthstar采纳,获得10
20秒前
Fairy发布了新的文献求助10
20秒前
huang完成签到,获得积分10
21秒前
maimu完成签到,获得积分10
22秒前
顺意完成签到,获得积分20
23秒前
24秒前
SciGPT应助好好采纳,获得10
24秒前
霸气的半邪完成签到,获得积分10
24秒前
25秒前
轮海完成签到,获得积分10
25秒前
1236应助wulianlian采纳,获得10
26秒前
李健应助wulianlian采纳,获得10
26秒前
27秒前
28秒前
研友_VZG7GZ应助小葡萄采纳,获得30
29秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
The late Devonian Standard Conodont Zonation 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 600
高级时间相关单光子计数技术 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3237820
求助须知:如何正确求助?哪些是违规求助? 2883294
关于积分的说明 8229526
捐赠科研通 2551435
什么是DOI,文献DOI怎么找? 1379799
科研通“疑难数据库(出版商)”最低求助积分说明 648872
邀请新用户注册赠送积分活动 624502