Machine Learning to Predict Stent Restenosis Based on Daily Demographic, Clinical, and Angiographic Characteristics

医学 内科学 心脏病学 再狭窄 支架
作者
Jesús Sampedro-Gómez,P. Ignacio Dorado-Díaz,Víctor Vicente-Palacios,Antonio Sánchez-Puente,Manuel F. Jiménez‐Navarro,José Alberto San Román,Purificación Galindo‐Villardón,Pedro L. Sánchez,Francisco Fernández‐Avilés
出处
期刊:Canadian Journal of Cardiology [Elsevier BV]
卷期号:36 (10): 1624-1632 被引量:43
标识
DOI:10.1016/j.cjca.2020.01.027
摘要

Background Machine learning (ML) has arrived in medicine to deliver individually adapted medical care. This study sought to use ML to discriminate stent restenosis (SR) compared with existing predictive scores of SR. To develop an easily applicable model, we performed our predictions without any additional variables other than those obtained in daily practice. Methods The dataset, obtained from the Grupo de Análisis de la Cardiopatía Isquémica Aguda (GRACIA)-3 trial, consisted of 263 patients with demographic, clinical, and angiographic characteristics; 23 (9%) of them presented with SR at 12 months after stent implantation. A methodology to work with small imbalanced datasets, based in cross-validation and the precision/recall (PR) plots, was used, and state-of-the-art ML classifiers were trained. Results Our best performing model (0.46, area under the PR curve [AUC-PR]) was developed with an extremely randomized trees classifier, which showed better performance than chance alone (0.09 AUC-PR, corresponding to the 9% of patients presenting SR in our dataset) and 3 existing scores; Prevention of Restenosis With Tranilast and its Outcomes (PRESTO)-1 (0.31 AUC-PR), PRESTO-2 (0.27 AUC-PR), and Evaluation of Drug-Eluting Stents and Ischemic Events (EVENT) (0.18 AUC-PR). The most important variables ranked according to their contribution to the predictions were diabetes, ≥2 vessel-coronary disease, post-percutaneous coronary intervention thrombolysis in myocardial infarction (PCI TIMI)-flow, abnormal platelets, post-PCI thrombus, and abnormal cholesterol. To counteract the lack of external validation for our study, we deployed our ML algorithm in an open source calculator, in which the model would stratify patients of high and low risk as an example tool to determine generalizability of prediction models from small imbalanced sample size. Conclusions Applied immediately after stent implantation, a ML model better differentiates those patients who will present with SR over current discriminators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
十三完成签到 ,获得积分10
1秒前
小张完成签到 ,获得积分10
1秒前
2秒前
luo完成签到,获得积分10
5秒前
海孩子完成签到,获得积分10
5秒前
8秒前
ZengQiu发布了新的文献求助10
8秒前
鳄鱼蛋完成签到,获得积分10
8秒前
宛海驳回了gfbh应助
11秒前
luo发布了新的文献求助10
12秒前
feitian201861完成签到,获得积分10
14秒前
Xiang完成签到,获得积分10
14秒前
mz完成签到 ,获得积分10
15秒前
追寻念云完成签到 ,获得积分10
15秒前
18秒前
18秒前
bkagyin应助suxin采纳,获得10
18秒前
BoBo完成签到 ,获得积分10
21秒前
22秒前
二三发布了新的文献求助10
23秒前
24秒前
26秒前
爱听歌的孤容完成签到 ,获得积分10
26秒前
27秒前
28秒前
sonic完成签到,获得积分10
29秒前
汉堡包应助科研进化中采纳,获得10
30秒前
ZZZ发布了新的文献求助10
31秒前
zwt13104完成签到,获得积分10
32秒前
32秒前
闪闪的MX完成签到,获得积分10
35秒前
36秒前
suxin发布了新的文献求助10
37秒前
陈醋塔塔完成签到,获得积分0
38秒前
积极的初南完成签到,获得积分10
39秒前
000发布了新的文献求助10
40秒前
41秒前
星星完成签到,获得积分10
42秒前
dawn发布了新的文献求助10
46秒前
充电宝应助ht采纳,获得10
46秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966223
求助须知:如何正确求助?哪些是违规求助? 3511662
关于积分的说明 11159065
捐赠科研通 3246265
什么是DOI,文献DOI怎么找? 1793321
邀请新用户注册赠送积分活动 874331
科研通“疑难数据库(出版商)”最低求助积分说明 804343