Design and Fabrication of Three-Dimensional Printed Scaffolds for Cancer Precision Medicine

生物加工 组织工程 药物输送 立体光刻 癌症 再生医学 计算机科学 纳米技术 个性化医疗 生物医学工程 医学 生物信息学 工程类 材料科学 化学 生物 细胞 机械工程 内科学 生物化学
作者
Abbas Shafiee
出处
期刊:Tissue Engineering Part A [Mary Ann Liebert]
卷期号:26 (5-6): 305-317 被引量:16
标识
DOI:10.1089/ten.tea.2019.0278
摘要

Three-dimensional (3D)-engineered scaffolds have been widely investigated as drug delivery systems (DDS) or cancer models with the aim to develop effective cancer therapies. The in vitro and in vivo models developed via 3D printing (3DP) and tissue engineering concepts have significantly contributed to our understanding of cell–cell and cell–extracellular matrix interactions in the cancer microenvironment. Moreover, 3D tumor models were used to study the therapeutic efficiency of anticancer drugs. The present study aims to provide an overview of applying the 3DP and tissue engineering concepts for cancer studies with suggestions for future research directions. The 3DP technologies being used for the fabrication of personalized DDS have been highlighted and the potential technical approaches and challenges associated with the fused deposition modeling, the inkjet-powder bed, and stereolithography as the most promising 3DP techniques for drug delivery purposes are briefly described. Then, the advances, challenges, and future perspectives in tissue-engineered cancer models for precision medicine are discussed. Overall, future advances in this arena depend on the continuous integration of knowledge from cancer biology, biofabrication techniques, multiomics and patient data, and medical needs to develop effective treatments ultimately leading to improved clinical outcomes. Three-dimensional printing (3DP) enables the fabrication of personalized medicines and drug delivery systems. The convergence of 3DP, tissue engineering concepts, and cancer biology could significantly improve our understanding of cancer biology and contribute to the development of new cancer therapies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助圣洁呀嘿采纳,获得10
1秒前
库昊的假粉丝应助战神蛙采纳,获得30
1秒前
2秒前
风车发布了新的文献求助10
2秒前
华仔应助辛勤香菇采纳,获得10
2秒前
甜美坤完成签到 ,获得积分10
2秒前
小鱼爱吃肉应助yinhe028采纳,获得10
4秒前
斯文败类应助山海采纳,获得10
4秒前
JamesPei应助Q特别忠茶采纳,获得10
4秒前
柯南发布了新的文献求助80
4秒前
旦子176完成签到,获得积分10
4秒前
5秒前
Zzz关闭了Zzz文献求助
5秒前
忧郁如柏完成签到,获得积分10
5秒前
sasha完成签到,获得积分10
5秒前
薛雯完成签到 ,获得积分10
6秒前
辰冠哲完成签到,获得积分10
6秒前
6秒前
小鱼爱吃肉应助Bi8bo采纳,获得10
7秒前
怪胎完成签到,获得积分10
7秒前
haha123完成签到,获得积分10
7秒前
zzzzzhhhh完成签到,获得积分10
8秒前
8秒前
可乐发布了新的文献求助10
9秒前
chenhunhun发布了新的文献求助10
10秒前
威威发布了新的文献求助10
10秒前
柏无极发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
霸气的鹰完成签到,获得积分10
12秒前
酷酷珠发布了新的文献求助10
13秒前
小瓶子发布了新的文献求助10
13秒前
LZHWSND完成签到,获得积分10
14秒前
15秒前
研友_VZG7GZ应助小贾同学采纳,获得10
15秒前
15秒前
16秒前
甜蜜寄文完成签到 ,获得积分10
16秒前
LL完成签到,获得积分10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312499
求助须知:如何正确求助?哪些是违规求助? 2945157
关于积分的说明 8523210
捐赠科研通 2620967
什么是DOI,文献DOI怎么找? 1433156
科研通“疑难数据库(出版商)”最低求助积分说明 664898
邀请新用户注册赠送积分活动 650255