Graph convolutional networks with multi-level coarsening for graph classification

计算机科学 图形 理论计算机科学 人工智能
作者
Yu Xie,Chuanyu Yao,Maoguo Gong,Cheng Chen,A. K. Qin
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:194: 105578-105578 被引量:41
标识
DOI:10.1016/j.knosys.2020.105578
摘要

Graph convolutional networks (GCNs) have attracted increasing attention in recent years. Many important tasks in graph analysis involve graph classification which aims to map a graph to a certain category. However, as the number of convolutional layers increases, most existing GCNs suffer from the problem of over-smoothing, which makes it difficult to extract the hierarchical information and global patterns of graphs when learning its representations. In this paper, we propose a multi-level coarsening based GCN (MLC-GCN) for graph classification. Specifically, from the perspective of graph analysis, we develop new insights into the convolutional architecture of image classification. Inspired by this, the two-stage MLC-GCN architecture is presented. In the architecture, we first introduce an adaptive structural coarsening module to produce a series of coarsened graphs and then construct the convolutional network based on these graphs. In contrast to existing GCNs, MLC-GCN has the advantages of learning graph representations at multiple levels while preserving the local and global information of graphs. Experimental results on multiple benchmark datasets demonstrate that the proposed MLC-GCN method is competitive with the state-of-the-art graph classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虾仔哥完成签到,获得积分10
刚刚
刚刚
充电宝应助Allyyin采纳,获得10
1秒前
1秒前
znn完成签到 ,获得积分10
1秒前
2秒前
2秒前
李一帆完成签到,获得积分20
2秒前
2秒前
wh发布了新的文献求助30
3秒前
summer3moon应助高兴的平露采纳,获得10
4秒前
4秒前
5秒前
ab发布了新的文献求助10
5秒前
hao关闭了hao文献求助
6秒前
cr7发布了新的文献求助10
6秒前
虾仔哥发布了新的文献求助10
6秒前
6秒前
wangSF发布了新的文献求助10
7秒前
小鹅发布了新的文献求助10
8秒前
荆轲刺秦王完成签到,获得积分10
9秒前
大福完成签到,获得积分0
9秒前
9秒前
SYLH应助啾一口香菜采纳,获得10
10秒前
10秒前
11秒前
12秒前
12秒前
cc完成签到,获得积分10
13秒前
ab完成签到,获得积分10
13秒前
14秒前
大白鹅发布了新的文献求助10
15秒前
15秒前
Yao丶发布了新的文献求助10
15秒前
CodeCraft应助NatKao采纳,获得10
15秒前
三土有兀完成签到 ,获得积分10
15秒前
Allyyin发布了新的文献求助10
16秒前
未晞发布了新的文献求助10
16秒前
JamesPei应助蚂蚁牙黑采纳,获得10
17秒前
从容的天空完成签到,获得积分10
17秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350