Graph convolutional networks with multi-level coarsening for graph classification

计算机科学 图形 理论计算机科学 人工智能
作者
Yu Xie,Chuanyu Yao,Maoguo Gong,Cheng Chen,A. K. Qin
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:194: 105578-105578 被引量:41
标识
DOI:10.1016/j.knosys.2020.105578
摘要

Graph convolutional networks (GCNs) have attracted increasing attention in recent years. Many important tasks in graph analysis involve graph classification which aims to map a graph to a certain category. However, as the number of convolutional layers increases, most existing GCNs suffer from the problem of over-smoothing, which makes it difficult to extract the hierarchical information and global patterns of graphs when learning its representations. In this paper, we propose a multi-level coarsening based GCN (MLC-GCN) for graph classification. Specifically, from the perspective of graph analysis, we develop new insights into the convolutional architecture of image classification. Inspired by this, the two-stage MLC-GCN architecture is presented. In the architecture, we first introduce an adaptive structural coarsening module to produce a series of coarsened graphs and then construct the convolutional network based on these graphs. In contrast to existing GCNs, MLC-GCN has the advantages of learning graph representations at multiple levels while preserving the local and global information of graphs. Experimental results on multiple benchmark datasets demonstrate that the proposed MLC-GCN method is competitive with the state-of-the-art graph classification methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
彭半梦发布了新的文献求助10
1秒前
env完成签到,获得积分10
2秒前
文艺的曼柔完成签到 ,获得积分10
2秒前
碧蓝的盼夏完成签到,获得积分10
2秒前
单薄茗完成签到,获得积分10
3秒前
3秒前
科研通AI6应助木棉哆哆采纳,获得10
3秒前
雪凝清霜发布了新的文献求助10
3秒前
4秒前
刘稀完成签到,获得积分10
4秒前
miaomiao完成签到,获得积分10
5秒前
陆菱柒发布了新的文献求助10
5秒前
5秒前
阔达的金鱼完成签到,获得积分10
5秒前
是我完成签到,获得积分10
5秒前
iuuu发布了新的文献求助10
6秒前
lhy发布了新的文献求助10
6秒前
7秒前
Lily完成签到,获得积分10
7秒前
7秒前
彭半梦完成签到,获得积分10
7秒前
8秒前
易晨曦发布了新的文献求助10
8秒前
聪明的可愁完成签到,获得积分10
8秒前
核桃发布了新的文献求助10
8秒前
8秒前
wanci应助xzh采纳,获得10
8秒前
LY完成签到 ,获得积分10
9秒前
单薄的尔烟完成签到 ,获得积分10
9秒前
9秒前
10秒前
可爱的函函应助CA737采纳,获得10
10秒前
研友_VZG7GZ应助香香香采纳,获得10
10秒前
zSmart发布了新的文献求助10
10秒前
漂亮豁完成签到,获得积分10
11秒前
妮妮完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5192215
求助须知:如何正确求助?哪些是违规求助? 4375198
关于积分的说明 13624085
捐赠科研通 4229463
什么是DOI,文献DOI怎么找? 2319944
邀请新用户注册赠送积分活动 1318415
关于科研通互助平台的介绍 1268598