人工智能
计算机科学
情态动词
支持向量机
模式识别(心理学)
探测器
曲率
机器学习
数学
材料科学
几何学
电信
高分子化学
作者
Haiming Huang,Junhao Lin,Linyuan Wu,Bin Fang,Zhenkun Wen,Fuchun Sun
出处
期刊:Tsinghua Science & Technology
[Tsinghua University Press]
日期:2019-09-02
卷期号:25 (2): 255-269
被引量:45
标识
DOI:10.26599/tst.2019.9010009
摘要
This paper focuses on multi-modal Information Perception (IP) for Soft Robotic Hands (SRHs) using Machine Learning (ML) algorithms. A flexible Optical Fiber-based Curvature Sensor (OFCS) is fabricated, consisting of a Light-Emitting Diode (LED), photosensitive detector, and optical fiber. Bending the roughened optical fiber generates lower light intensity, which reflecting the curvature of the soft finger. Together with the curvature and pressure information, multi-modal IP is performed to improve the recognition accuracy. Recognitions of gesture, object shape, size, and weight are implemented with multiple ML approaches, including the Supervised Learning Algorithms (SLAs) of K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Logistic Regression (LR), and the unSupervised Learning Algorithm (un-SLA) of K-Means Clustering (KMC). Moreover, Optical Sensor Information (OSI), Pressure Sensor Information (PSI), and Double-Sensor Information (DSI) are adopted to compare the recognition accuracies. The experiment results demonstrate that the proposed sensors and recognition approaches are feasible and effective. The recognition accuracies obtained using the above ML algorithms and three modes of sensor information are higher than 85 percent for almost all combinations. Moreover, DSI is more accurate when compared to single modal sensor information and the KNN algorithm with a DSI outperforms the other combinations in recognition accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI