Interpretable and Efficient Heterogeneous Graph Convolutional Network

计算机科学 可解释性 粒度 理论计算机科学 计算复杂性理论 图形 利用 卷积(计算机科学) 网络体系结构 人工智能 算法 人工神经网络 计算机安全 操作系统
作者
Yaming Yang,Ziyu Guan,Jianxin Li,Wei Zhao,Jiangtao Cui,Quan Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:58
标识
DOI:10.1109/tkde.2021.3101356
摘要

Graph Convolutional Network (GCN) has achieved extraordinary success in learning representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for each target object, which hinders both effectiveness and interpretability; (2) before performing aggregation, they often require some additional time-consuming pre-processing operations, which increase the computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation and type-level aggregation. The new architecture can automatically evaluate all possible meta-paths within a length limit, and discover and exploit the most useful ones for each target object, i.e., at fine granularity. It also reduces the computational cost by avoiding additional time-consuming pre-processing operations. Theoretical analysis shows its ability to evaluate the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on four real network datasets demonstrate its interpretability, efficiency as well as its superiority against thirteen baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhhhao完成签到,获得积分10
2秒前
莫惊春睡完成签到,获得积分10
3秒前
深情安青应助sherry采纳,获得10
3秒前
HC3完成签到 ,获得积分10
6秒前
阿飞完成签到,获得积分10
7秒前
7秒前
乐乐应助sheng采纳,获得10
10秒前
dmsoli发布了新的文献求助10
12秒前
16秒前
今天很好明天会更好给今天很好明天会更好的求助进行了留言
17秒前
SW发布了新的文献求助10
18秒前
122完成签到 ,获得积分10
19秒前
曲怜阳发布了新的文献求助10
22秒前
Carpediem完成签到,获得积分10
22秒前
23秒前
ahengo完成签到,获得积分10
25秒前
25秒前
安然完成签到,获得积分10
26秒前
Carpediem发布了新的文献求助10
29秒前
拼搏草莓发布了新的文献求助10
30秒前
31秒前
33秒前
zhamb发布了新的文献求助10
37秒前
共享精神应助火神杯采纳,获得20
37秒前
43秒前
43秒前
打打应助zhamb采纳,获得10
45秒前
落落落发布了新的文献求助10
47秒前
吾儿坤发布了新的文献求助10
47秒前
微微发布了新的文献求助10
50秒前
PlanetaryLayer应助吾儿坤采纳,获得10
53秒前
54秒前
jtksbf完成签到 ,获得积分10
55秒前
56秒前
小乐比发布了新的文献求助10
1分钟前
monkona关注了科研通微信公众号
1分钟前
充电宝应助微微采纳,获得10
1分钟前
散逸层梦游应助aaa采纳,获得30
1分钟前
彭于晏应助haui采纳,获得10
1分钟前
Ava应助C_Cppp采纳,获得10
1分钟前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348980
求助须知:如何正确求助?哪些是违规求助? 2975143
关于积分的说明 8667699
捐赠科研通 2655836
什么是DOI,文献DOI怎么找? 1454224
科研通“疑难数据库(出版商)”最低求助积分说明 673254
邀请新用户注册赠送积分活动 663696