Interpretable and Efficient Heterogeneous Graph Convolutional Network

计算机科学 可解释性 粒度 理论计算机科学 计算复杂性理论 图形 利用 卷积(计算机科学) 网络体系结构 人工智能 算法 人工神经网络 计算机安全 操作系统
作者
Yaming Yang,Ziyu Guan,Jianxin Li,Wei Zhao,Jiangtao Cui,Quan Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:58
标识
DOI:10.1109/tkde.2021.3101356
摘要

Graph Convolutional Network (GCN) has achieved extraordinary success in learning representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for each target object, which hinders both effectiveness and interpretability; (2) before performing aggregation, they often require some additional time-consuming pre-processing operations, which increase the computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation and type-level aggregation. The new architecture can automatically evaluate all possible meta-paths within a length limit, and discover and exploit the most useful ones for each target object, i.e., at fine granularity. It also reduces the computational cost by avoiding additional time-consuming pre-processing operations. Theoretical analysis shows its ability to evaluate the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on four real network datasets demonstrate its interpretability, efficiency as well as its superiority against thirteen baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助浅斟低唱采纳,获得10
1秒前
2秒前
yurunxintian完成签到,获得积分10
3秒前
4秒前
小子发布了新的文献求助30
4秒前
跳跃的冷卉完成签到 ,获得积分10
4秒前
引子给认真的弼的求助进行了留言
7秒前
科研小民工应助betty2009采纳,获得30
7秒前
p13508397190发布了新的文献求助10
8秒前
YP_024完成签到,获得积分10
8秒前
10秒前
结实擎苍发布了新的文献求助10
10秒前
10秒前
11秒前
12秒前
甜甜太阳发布了新的文献求助10
14秒前
chuhaomin发布了新的文献求助30
14秒前
陌上花开发布了新的文献求助10
16秒前
老姚完成签到,获得积分10
17秒前
17秒前
无限秋天发布了新的文献求助10
18秒前
luo完成签到,获得积分10
20秒前
20秒前
bala完成签到 ,获得积分10
20秒前
明朗完成签到 ,获得积分10
21秒前
幽默亦旋完成签到 ,获得积分10
21秒前
1+1应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
顾矜应助科研通管家采纳,获得10
22秒前
爱静静应助jiang采纳,获得10
22秒前
zhangyidian应助科研通管家采纳,获得10
22秒前
lijianguo应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
22秒前
李健应助科研通管家采纳,获得10
22秒前
大模型应助结实擎苍采纳,获得10
23秒前
酷波er应助科研通管家采纳,获得10
23秒前
今后应助科研通管家采纳,获得10
23秒前
隐形曼青应助科研通管家采纳,获得10
23秒前
充电宝应助科研通管家采纳,获得10
23秒前
zhangyidian应助科研通管家采纳,获得10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093