计算机科学
可解释性
粒度
理论计算机科学
计算复杂性理论
图形
利用
卷积(计算机科学)
网络体系结构
人工智能
算法
人工神经网络
计算机安全
操作系统
作者
Yaming Yang,Ziyu Guan,Jianxin Li,Wei Zhao,Jiangtao Cui,Quan Wang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering
[Institute of Electrical and Electronics Engineers]
日期:2021-01-01
卷期号:: 1-1
被引量:58
标识
DOI:10.1109/tkde.2021.3101356
摘要
Graph Convolutional Network (GCN) has achieved extraordinary success in learning representations of nodes in graphs. However, regarding Heterogeneous Information Network (HIN), existing HIN-oriented GCN methods still suffer from two deficiencies: (1) they cannot flexibly explore all possible meta-paths and extract the most useful ones for each target object, which hinders both effectiveness and interpretability; (2) before performing aggregation, they often require some additional time-consuming pre-processing operations, which increase the computational complexity. To address the above issues, we propose an interpretable and efficient Heterogeneous Graph Convolutional Network (ie-HGCN) to learn the representations of objects in HINs. It is designed as a hierarchical aggregation architecture, i.e., object-level aggregation and type-level aggregation. The new architecture can automatically evaluate all possible meta-paths within a length limit, and discover and exploit the most useful ones for each target object, i.e., at fine granularity. It also reduces the computational cost by avoiding additional time-consuming pre-processing operations. Theoretical analysis shows its ability to evaluate the usefulness of all possible meta-paths, its connection to the spectral graph convolution on HINs, and its quasi-linear time complexity. Extensive experiments on four real network datasets demonstrate its interpretability, efficiency as well as its superiority against thirteen baselines.
科研通智能强力驱动
Strongly Powered by AbleSci AI