Relation-Aware Facial Expression Recognition

计算机科学 判别式 表达式(计算机科学) 人工智能 面部表情 幻觉 关系(数据库) 三维人脸识别 面部表情识别 模式识别(心理学) 光学(聚焦) 面部识别系统 特征提取 面子(社会学概念) 卷积神经网络 语音识别 计算机视觉 人工神经网络 人脸检测 数据挖掘 社会科学 物理 光学 社会学 程序设计语言
作者
Yifan Xia,Hui Yu,Xiao Wang,Muwei Jian,Fei-Yue Wang
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 1143-1154 被引量:1
标识
DOI:10.1109/tcds.2021.3100131
摘要

Research on facial expression recognition has been moving from the constrained lab scenarios to the in-the-wild situations and has made progress in recent years. However, it is still very challenging to deal with facial expression in the wild due to large poses and occlusion as well as illumination and intensity variations. Generally, existing methods mainly take the whole face as a uniform source of features for facial expression analysis. Actually, physiology and psychology research shows that some crucial regions, such as the eye and mouth, reflect the differences of different facial expressions, which have close relationships with emotion expression. Inspired by this observation, a novel relation-aware facial expression recognition method called relation convolutional neural network (ReCNN) is proposed in this article, which can adaptively capture the relationship between crucial regions and facial expressions leading to the focus on the most discriminative regions for recognition. We have evaluated the proposed ReCNN on two large in-the-wild databases: 1) AffectNet and 2) RAF-DB. Extensive experiments on these databases show that our method has superior recognition accuracy compared with state-of-the-art methods and the relationship between crucial regions and facial expressions is beneficial to improve the performance of facial expression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
June完成签到,获得积分10
1秒前
Zz发布了新的文献求助10
1秒前
嗷嗷完成签到,获得积分10
1秒前
zhao发布了新的文献求助10
1秒前
shz发布了新的文献求助20
1秒前
热水发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
今后应助七七采纳,获得10
6秒前
6秒前
浮生若梦完成签到 ,获得积分10
6秒前
多情的裘发布了新的文献求助10
9秒前
9秒前
hh发布了新的文献求助10
10秒前
嘿嘿完成签到 ,获得积分10
10秒前
CL完成签到,获得积分10
10秒前
JamesPei应助糟糕的铁锤采纳,获得200
11秒前
受伤的鼠标关注了科研通微信公众号
11秒前
任性灵寒发布了新的文献求助10
11秒前
13秒前
丘比特应助DW采纳,获得10
13秒前
华仔应助聪慧的从雪采纳,获得30
14秒前
斯文败类应助章如豹采纳,获得10
15秒前
桐桐应助Rui采纳,获得10
16秒前
16秒前
是漏漏呀发布了新的文献求助10
17秒前
17秒前
南冥完成签到 ,获得积分10
18秒前
18秒前
19秒前
pengzh发布了新的文献求助30
19秒前
Jasper应助Dou采纳,获得10
22秒前
可耐的映秋完成签到,获得积分10
22秒前
BINGBONG完成签到,获得积分10
22秒前
威武冷雪发布了新的文献求助10
23秒前
李串串发布了新的文献求助10
23秒前
DW发布了新的文献求助10
24秒前
25秒前
一一应助啊悫采纳,获得10
25秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3476842
求助须知:如何正确求助?哪些是违规求助? 3068424
关于积分的说明 9107761
捐赠科研通 2759834
什么是DOI,文献DOI怎么找? 1514308
邀请新用户注册赠送积分活动 700220
科研通“疑难数据库(出版商)”最低求助积分说明 699399