Relation-Aware Facial Expression Recognition

计算机科学 判别式 表达式(计算机科学) 人工智能 面部表情 幻觉 关系(数据库) 三维人脸识别 面部表情识别 模式识别(心理学) 光学(聚焦) 面部识别系统 特征提取 面子(社会学概念) 卷积神经网络 语音识别 计算机视觉 人工神经网络 人脸检测 数据挖掘 社会科学 物理 光学 社会学 程序设计语言
作者
Yifan Xia,Hui Yu,Xiao Wang,Muwei Jian,Fei-Yue Wang
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 1143-1154 被引量:1
标识
DOI:10.1109/tcds.2021.3100131
摘要

Research on facial expression recognition has been moving from the constrained lab scenarios to the in-the-wild situations and has made progress in recent years. However, it is still very challenging to deal with facial expression in the wild due to large poses and occlusion as well as illumination and intensity variations. Generally, existing methods mainly take the whole face as a uniform source of features for facial expression analysis. Actually, physiology and psychology research shows that some crucial regions, such as the eye and mouth, reflect the differences of different facial expressions, which have close relationships with emotion expression. Inspired by this observation, a novel relation-aware facial expression recognition method called relation convolutional neural network (ReCNN) is proposed in this article, which can adaptively capture the relationship between crucial regions and facial expressions leading to the focus on the most discriminative regions for recognition. We have evaluated the proposed ReCNN on two large in-the-wild databases: 1) AffectNet and 2) RAF-DB. Extensive experiments on these databases show that our method has superior recognition accuracy compared with state-of-the-art methods and the relationship between crucial regions and facial expressions is beneficial to improve the performance of facial expression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无敌大滨州完成签到,获得积分10
1秒前
无心的闭月完成签到,获得积分10
1秒前
2秒前
3秒前
3秒前
zfr662完成签到,获得积分10
3秒前
3秒前
Ywffffff发布了新的文献求助10
4秒前
NexusExplorer应助淡淡的寻凝采纳,获得10
4秒前
可爱的函函应助tamaco采纳,获得10
5秒前
6秒前
英姑应助科研通管家采纳,获得10
7秒前
lyh发布了新的文献求助10
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
Owen应助科研通管家采纳,获得10
7秒前
lishiwei发布了新的文献求助10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
英姑应助科研通管家采纳,获得10
7秒前
Dean应助科研通管家采纳,获得50
7秒前
Dean应助科研通管家采纳,获得50
7秒前
Lucas应助科研通管家采纳,获得10
8秒前
ding应助科研通管家采纳,获得10
8秒前
8秒前
微笑向卉发布了新的文献求助10
8秒前
8秒前
啾啾发布了新的文献求助10
9秒前
曾经沛容关注了科研通微信公众号
11秒前
Lucas应助www什么采纳,获得10
11秒前
流云发布了新的文献求助10
11秒前
12秒前
李乔完成签到,获得积分10
12秒前
13秒前
一木完成签到,获得积分10
13秒前
汉堡包应助wuuw采纳,获得10
13秒前
李健应助lyh采纳,获得10
14秒前
三年半完成签到,获得积分10
14秒前
14秒前
小金星星发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5088395
求助须知:如何正确求助?哪些是违规求助? 4303286
关于积分的说明 13410954
捐赠科研通 4129075
什么是DOI,文献DOI怎么找? 2261109
邀请新用户注册赠送积分活动 1265259
关于科研通互助平台的介绍 1199722