Relation-Aware Facial Expression Recognition

计算机科学 判别式 表达式(计算机科学) 人工智能 面部表情 幻觉 关系(数据库) 三维人脸识别 面部表情识别 模式识别(心理学) 光学(聚焦) 面部识别系统 特征提取 面子(社会学概念) 卷积神经网络 语音识别 计算机视觉 人工神经网络 人脸检测 数据挖掘 光学 物理 社会学 社会科学 程序设计语言
作者
Yifan Xia,Hui Yu,Xiao Wang,Muwei Jian,Fei-Yue Wang
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 1143-1154 被引量:1
标识
DOI:10.1109/tcds.2021.3100131
摘要

Research on facial expression recognition has been moving from the constrained lab scenarios to the in-the-wild situations and has made progress in recent years. However, it is still very challenging to deal with facial expression in the wild due to large poses and occlusion as well as illumination and intensity variations. Generally, existing methods mainly take the whole face as a uniform source of features for facial expression analysis. Actually, physiology and psychology research shows that some crucial regions, such as the eye and mouth, reflect the differences of different facial expressions, which have close relationships with emotion expression. Inspired by this observation, a novel relation-aware facial expression recognition method called relation convolutional neural network (ReCNN) is proposed in this article, which can adaptively capture the relationship between crucial regions and facial expressions leading to the focus on the most discriminative regions for recognition. We have evaluated the proposed ReCNN on two large in-the-wild databases: 1) AffectNet and 2) RAF-DB. Extensive experiments on these databases show that our method has superior recognition accuracy compared with state-of-the-art methods and the relationship between crucial regions and facial expressions is beneficial to improve the performance of facial expression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYC完成签到,获得积分10
刚刚
1秒前
玐玐完成签到 ,获得积分10
1秒前
2秒前
feitian201861完成签到,获得积分0
3秒前
执意完成签到 ,获得积分10
3秒前
球宝完成签到,获得积分10
3秒前
mia完成签到,获得积分10
4秒前
向雅完成签到,获得积分10
6秒前
123发布了新的文献求助10
6秒前
爆米花应助舒心衣采纳,获得10
6秒前
7秒前
一朵小鲜花儿完成签到,获得积分10
7秒前
Uki完成签到,获得积分10
7秒前
Sodagreen2023完成签到,获得积分10
7秒前
wuhu发布了新的文献求助10
7秒前
Profeto应助yoyo20012623采纳,获得10
8秒前
英俊的铭应助标致嫣采纳,获得10
8秒前
向言之完成签到,获得积分10
8秒前
潇湘夜雨完成签到,获得积分10
8秒前
xiaoliu发布了新的文献求助10
9秒前
黑就嘿完成签到,获得积分10
9秒前
踏实的无敌完成签到,获得积分10
9秒前
ethan2801完成签到,获得积分10
9秒前
白石溪完成签到,获得积分10
9秒前
weiyongswust发布了新的文献求助10
10秒前
11秒前
快乐的鱼完成签到,获得积分10
11秒前
sssssssssss完成签到,获得积分10
11秒前
zheng完成签到 ,获得积分10
13秒前
小胡完成签到,获得积分20
17秒前
大气的裙子完成签到,获得积分10
18秒前
18秒前
xy小侠女完成签到,获得积分10
18秒前
文艺小馒头完成签到,获得积分10
18秒前
亭子完成签到,获得积分10
20秒前
zero完成签到,获得积分10
20秒前
华仔应助abc采纳,获得10
20秒前
Kay76完成签到,获得积分10
21秒前
123完成签到,获得积分10
21秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027