亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Wax Deposits for Crude Pipelines Using Time-Dependent Data Mining

粒子群优化 管道运输 计算机科学 管道(软件) 人工神经网络 清管 数据挖掘 算法 人工智能 工程类 环境工程 程序设计语言
作者
Bo Yao,Jiaqi Chen,Chuanxian Li,Fei Yang,Guangyu Sun,Yingda Lu
出处
期刊:Spe Journal [Society of Petroleum Engineers]
卷期号:: 1-22 被引量:3
标识
DOI:10.2118/205374-pa
摘要

Summary Accurately predicting wax deposits in a crude pipeline through empirical formulas or numerical modeling is unreliable because of the incomplete mechanism and the time-dependent unsteady actual operating conditions. With the help of the data collected by the supervisory control and data acquisition system of pipelines, wax deposit prediction is made possible by developing the time-dependent data mining method. In this article, the data from a typical long-distance crude pipeline in China operating over a 4-year time period was investigated. The inlet temperature prediction was first conducted by developing the long short-term memory (LSTM)-recurrent neural networks (RNNs) model, during which the feature sequencing, overfitting problems, and optimal hyperparameters were fully considered. Because of the time sequence cell, the accuracy of the LSTM-RNN model, as well as the time consumption, is much better than the RNN model when dealing with a great deal of data over a long period of time. Taking the inlet temperature prediction results as input features, the prediction model of average wax deposit thickness was established based on the backpropagation (BP) neural network and optimized by the particle swarm optimization (PSO), chaos particle swarm optimization (CPSO), and adaptive chaos particle swarm optimization (ACPSO) algorithms. The conclusions and associated algorithm from this article help to determine the reasonable pigging circle of long-distance pipelines practically. It could also be applied to guide the wax deposit prediction in the wellbore or oil-gatheringpipes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
激动的似狮完成签到,获得积分10
7秒前
Marciu33发布了新的文献求助10
39秒前
40秒前
ataybabdallah发布了新的文献求助10
47秒前
andrele应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
yuqian发布了新的文献求助10
1分钟前
丘比特应助小可爱采纳,获得10
1分钟前
尘尘完成签到,获得积分10
1分钟前
uu完成签到 ,获得积分10
1分钟前
2分钟前
小可爱完成签到,获得积分10
2分钟前
小可爱发布了新的文献求助10
2分钟前
yuqian完成签到,获得积分20
2分钟前
彭于晏应助害羞的采波采纳,获得20
2分钟前
ding应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
andrele应助科研通管家采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
第二支羽毛完成签到 ,获得积分10
3分钟前
CQC关闭了CQC文献求助
3分钟前
3分钟前
研友_89Nm7L发布了新的文献求助10
3分钟前
Akim应助害羞的采波采纳,获得10
3分钟前
JamesPei应助研友_89Nm7L采纳,获得10
3分钟前
jing给jing的求助进行了留言
4分钟前
5分钟前
Ava应助lalalatiancai采纳,获得10
5分钟前
5分钟前
CodeCraft应助害羞的采波采纳,获得10
5分钟前
5分钟前
lalalatiancai发布了新的文献求助10
5分钟前
xiezhuochun完成签到 ,获得积分10
5分钟前
lalalatiancai完成签到,获得积分10
5分钟前
6分钟前
6分钟前
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671249
求助须知:如何正确求助?哪些是违规求助? 3228122
关于积分的说明 9778506
捐赠科研通 2938375
什么是DOI,文献DOI怎么找? 1609969
邀请新用户注册赠送积分活动 760503
科研通“疑难数据库(出版商)”最低求助积分说明 735991