Prognostic value of CT radiomics in evaluating lymphovascular invasion in rectal cancer: Diagnostic performance based on different volumes of interest

淋巴血管侵犯 医学 接收机工作特性 列线图 结直肠癌 放射科 逻辑回归 无线电技术 比例危险模型 核医学 阶段(地层学) 癌症 肿瘤科 内科学 转移 古生物学 生物
作者
Yuxi Ge,Wenbo Xu,Zi Wang,Junqin Zhang,Xinyi Zhou,Shaofeng Duan,Shudong Hu,Bojian Fei
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (4): 663-674 被引量:12
标识
DOI:10.3233/xst-210877
摘要

OBJECTIVES: This study aims to evaluate diagnostic performance of radiomic analysis using computed tomography (CT) to identify lymphovascular invasion (LVI) in patients diagnosed with rectal cancer and assess diagnostic performance of different lesion segmentations. METHODS: The study is applied to 169 pre-treatment CT images and the clinical features of patients with rectal cancer. Radiomic features are extracted from two different volumes of interest (VOIs) namely, gross tumor volume and peri-tumor tissue volume. The maximum relevance and the minimum redundancy, and the least absolute shrinkage selection operator based logistic regression analyses are performed to select the optimal feature subset on the training cohort. Then, Rad and Rad-clinical combined models for LVI prediction are built and compared. Finally, the models are externally validated. RESULTS: Eighty-three patients had positive LVI on pathology, while 86 had negative LVI. An optimal multi-mode radiology nomogram for LVI estimation is established. The area under the receiver operating characteristic curves of the Rad and Rad-clinical combined model in the peri-tumor VOI group are significantly higher than those in the tumor VOI group (Rad: peri-tumor vs. tumor: 0.85 vs. 0.68; Rad-clinical: peri-tumor vs. tumor: 0.90 vs 0.82) in the validation cohort. Decision curve analysis shows that the peri-tumor-based Rad-clinical combined model has the best performance in identifying LVI than other models. CONCLUSIONS: CT radiomics model based on peri-tumor volumes improves prediction performance of LVI in rectal cancer compared with the model based on tumor volumes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
赵哈哈完成签到,获得积分10
刚刚
1秒前
2秒前
小柠檬发布了新的文献求助10
2秒前
he发布了新的文献求助10
2秒前
2秒前
CodeCraft应助啵啵采纳,获得10
2秒前
3秒前
otaro发布了新的文献求助30
3秒前
贝利亚发布了新的文献求助10
3秒前
清脆的台灯完成签到,获得积分10
4秒前
范范完成签到 ,获得积分10
4秒前
星辰大海应助starry采纳,获得10
5秒前
科研通AI5应助Xxxnnian采纳,获得30
5秒前
执着的小蘑菇完成签到,获得积分10
6秒前
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
小蘑菇应助科研通管家采纳,获得10
6秒前
顺顺发布了新的文献求助10
6秒前
上官若男应助科研通管家采纳,获得30
6秒前
汉堡包应助科研通管家采纳,获得30
6秒前
6秒前
烟花应助科研通管家采纳,获得10
7秒前
李健应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
星辰大海应助科研通管家采纳,获得10
7秒前
大模型应助科研通管家采纳,获得10
7秒前
天天快乐应助科研通管家采纳,获得10
7秒前
爆米花应助科研通管家采纳,获得10
7秒前
大个应助科研通管家采纳,获得10
7秒前
NexusExplorer应助科研通管家采纳,获得10
7秒前
maox1aoxin应助科研通管家采纳,获得30
7秒前
无花果应助科研通管家采纳,获得10
8秒前
11完成签到,获得积分10
8秒前
8秒前
8秒前
时尚的书易给时尚的书易的求助进行了留言
8秒前
南北完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678