Prognostic value of CT radiomics in evaluating lymphovascular invasion in rectal cancer: Diagnostic performance based on different volumes of interest

淋巴血管侵犯 医学 接收机工作特性 列线图 结直肠癌 放射科 逻辑回归 无线电技术 比例危险模型 核医学 阶段(地层学) 癌症 肿瘤科 内科学 转移 古生物学 生物
作者
Yuxi Ge,Wenbo Xu,Zi Wang,Junqin Zhang,Xinyi Zhou,Shaofeng Duan,Shudong Hu,Bojian Fei
出处
期刊:Journal of X-ray Science and Technology [IOS Press]
卷期号:29 (4): 663-674 被引量:12
标识
DOI:10.3233/xst-210877
摘要

OBJECTIVES: This study aims to evaluate diagnostic performance of radiomic analysis using computed tomography (CT) to identify lymphovascular invasion (LVI) in patients diagnosed with rectal cancer and assess diagnostic performance of different lesion segmentations. METHODS: The study is applied to 169 pre-treatment CT images and the clinical features of patients with rectal cancer. Radiomic features are extracted from two different volumes of interest (VOIs) namely, gross tumor volume and peri-tumor tissue volume. The maximum relevance and the minimum redundancy, and the least absolute shrinkage selection operator based logistic regression analyses are performed to select the optimal feature subset on the training cohort. Then, Rad and Rad-clinical combined models for LVI prediction are built and compared. Finally, the models are externally validated. RESULTS: Eighty-three patients had positive LVI on pathology, while 86 had negative LVI. An optimal multi-mode radiology nomogram for LVI estimation is established. The area under the receiver operating characteristic curves of the Rad and Rad-clinical combined model in the peri-tumor VOI group are significantly higher than those in the tumor VOI group (Rad: peri-tumor vs. tumor: 0.85 vs. 0.68; Rad-clinical: peri-tumor vs. tumor: 0.90 vs 0.82) in the validation cohort. Decision curve analysis shows that the peri-tumor-based Rad-clinical combined model has the best performance in identifying LVI than other models. CONCLUSIONS: CT radiomics model based on peri-tumor volumes improves prediction performance of LVI in rectal cancer compared with the model based on tumor volumes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助marshyyy采纳,获得10
刚刚
刚刚
LaTeXer应助wert采纳,获得50
刚刚
清爽的尔白完成签到,获得积分10
1秒前
boxi发布了新的文献求助10
1秒前
2秒前
十七发布了新的文献求助10
2秒前
2秒前
芋泥桃桃发布了新的文献求助10
2秒前
Young完成签到,获得积分10
3秒前
547发布了新的文献求助10
3秒前
可爱的函函应助1147468624采纳,获得10
3秒前
6680668完成签到,获得积分10
4秒前
科研民工完成签到,获得积分10
4秒前
5秒前
5秒前
lqq完成签到,获得积分10
5秒前
懒洋洋完成签到,获得积分10
5秒前
WYJie完成签到,获得积分10
5秒前
丘比特应助ser采纳,获得10
5秒前
sunzhuxi发布了新的文献求助10
5秒前
pppy发布了新的文献求助10
6秒前
6秒前
6秒前
科研通AI2S应助DrWang采纳,获得10
6秒前
mrjohn完成签到,获得积分10
6秒前
7秒前
科研GO应助朴实惜天采纳,获得10
7秒前
木木发布了新的文献求助10
8秒前
AKM完成签到,获得积分10
8秒前
田様应助xuxu采纳,获得30
8秒前
圆圆发布了新的文献求助10
9秒前
9秒前
yy完成签到 ,获得积分10
9秒前
9秒前
巴拿娜完成签到 ,获得积分10
10秒前
10秒前
汉堡包应助单春栋采纳,获得10
11秒前
Sss句末应助小王采纳,获得10
11秒前
小蘑菇应助小吴同学来啦采纳,获得10
11秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009834
求助须知:如何正确求助?哪些是违规求助? 3549753
关于积分的说明 11303647
捐赠科研通 3284309
什么是DOI,文献DOI怎么找? 1810591
邀请新用户注册赠送积分活动 886367
科研通“疑难数据库(出版商)”最低求助积分说明 811406