A new convolutional neural network predictive model for the automatic recognition of hypogranulated neutrophils in myelodysplastic syndromes

卷积神经网络 人工智能 深度学习 预测值 外周血 计算机科学 模式识别(心理学) 工作流程 医学 病理 机器学习 内科学 数据库
作者
Andrea Acevedo,Anna Merino,Laura Boldú,Ángel Molina,Santiago Alférez,José Rodellar
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:134: 104479-104479 被引量:16
标识
DOI:10.1016/j.compbiomed.2021.104479
摘要

Dysplastic neutrophils commonly show at least 2/3 reduction of the content of cytoplasmic granules by morphologic examination. Recognition of less granulated dysplastic neutrophils by human eyes is difficult and prone to inter-observer variability. To tackle this problem, we proposed a new deep learning model (DysplasiaNet) able to automatically recognize the presence of hypogranulated dysplastic neutrophils in peripheral blood. Eight models were generated by varying convolutional blocks, number of layer nodes and fully connected layers. Each model was trained for 20 epochs. The five most accurate models were selected for a second stage, being trained again from scratch for 100 epochs. After training, cut-off values were calculated for a granularity score that discerns between normal and dysplastic neutrophils. Furthermore, a threshold value was obtained to quantify the minimum proportion of dysplastic neutrophils in the smear to consider that the patient might have a myelodysplastic syndrome (MDS). The final selected model was the one with the highest accuracy (95.5%). We performed a final proof of concept with new patients not involved in previous steps. We reported 95.5% sensitivity, 94.3% specificity, 94% precision, and a global accuracy of 94.85%. The primary contribution of this work is a predictive model for the automatic recognition in an objective way of hypogranulated neutrophils in peripheral blood smears. We envision the utility of the model implemented as an evaluation tool for MDS diagnosis integrated in the clinical laboratory workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小黄瓜896发布了新的文献求助10
1秒前
Simlove完成签到,获得积分10
1秒前
小幸运完成签到,获得积分10
1秒前
一一应助科研通管家采纳,获得20
2秒前
Ava应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
2秒前
天天快乐应助许nana采纳,获得10
3秒前
song发布了新的文献求助30
3秒前
asu发布了新的文献求助10
3秒前
3秒前
4秒前
yufanhui应助每天都要开心采纳,获得10
5秒前
潇湘魂发布了新的文献求助10
6秒前
都是发布了新的文献求助10
6秒前
amll完成签到,获得积分10
6秒前
完美的天空应助lananal采纳,获得10
6秒前
7秒前
李爱国应助冯昊采纳,获得10
7秒前
所所应助keke采纳,获得10
8秒前
8秒前
10秒前
Cina应助从容的惋庭采纳,获得10
10秒前
李白白应助wille采纳,获得10
10秒前
Neal_Wang完成签到,获得积分10
10秒前
无花果应助闻诗歌采纳,获得10
10秒前
田様应助橙子是不是采纳,获得10
11秒前
汉堡包应助兴奋的小丸子采纳,获得50
11秒前
威武语儿发布了新的文献求助10
12秒前
英俊的铭应助胡j采纳,获得10
12秒前
Iris完成签到,获得积分10
13秒前
悠旷发布了新的文献求助10
14秒前
刘昊政发布了新的文献求助10
14秒前
tiaotiao完成签到,获得积分10
15秒前
15秒前
15秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3123951
求助须知:如何正确求助?哪些是违规求助? 2774359
关于积分的说明 7722160
捐赠科研通 2429940
什么是DOI,文献DOI怎么找? 1290751
科研通“疑难数据库(出版商)”最低求助积分说明 621911
版权声明 600283