A new convolutional neural network predictive model for the automatic recognition of hypogranulated neutrophils in myelodysplastic syndromes

卷积神经网络 人工智能 深度学习 预测值 外周血 计算机科学 模式识别(心理学) 工作流程 医学 病理 机器学习 内科学 数据库
作者
Andrea Acevedo,Anna Merino,Laura Boldú,Ángel Molina,Santiago Alférez,José Rodellar
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:134: 104479-104479 被引量:16
标识
DOI:10.1016/j.compbiomed.2021.104479
摘要

Dysplastic neutrophils commonly show at least 2/3 reduction of the content of cytoplasmic granules by morphologic examination. Recognition of less granulated dysplastic neutrophils by human eyes is difficult and prone to inter-observer variability. To tackle this problem, we proposed a new deep learning model (DysplasiaNet) able to automatically recognize the presence of hypogranulated dysplastic neutrophils in peripheral blood. Eight models were generated by varying convolutional blocks, number of layer nodes and fully connected layers. Each model was trained for 20 epochs. The five most accurate models were selected for a second stage, being trained again from scratch for 100 epochs. After training, cut-off values were calculated for a granularity score that discerns between normal and dysplastic neutrophils. Furthermore, a threshold value was obtained to quantify the minimum proportion of dysplastic neutrophils in the smear to consider that the patient might have a myelodysplastic syndrome (MDS). The final selected model was the one with the highest accuracy (95.5%). We performed a final proof of concept with new patients not involved in previous steps. We reported 95.5% sensitivity, 94.3% specificity, 94% precision, and a global accuracy of 94.85%. The primary contribution of this work is a predictive model for the automatic recognition in an objective way of hypogranulated neutrophils in peripheral blood smears. We envision the utility of the model implemented as an evaluation tool for MDS diagnosis integrated in the clinical laboratory workflow.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kemovezh完成签到,获得积分10
1秒前
fgd应助优秀的枕头采纳,获得10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
平常白凝发布了新的文献求助70
4秒前
4秒前
TRISTE完成签到 ,获得积分10
5秒前
可爱曼易完成签到,获得积分10
6秒前
李健应助开整吧采纳,获得10
7秒前
7秒前
fanghao完成签到 ,获得积分10
8秒前
8秒前
闪闪书桃完成签到,获得积分10
8秒前
9秒前
zhanglh发布了新的文献求助10
11秒前
完美世界应助无糖可乐采纳,获得10
12秒前
suwan完成签到,获得积分10
12秒前
Jotaro发布了新的文献求助10
13秒前
13秒前
枯木逢春完成签到,获得积分10
15秒前
杪123完成签到 ,获得积分10
15秒前
15秒前
16秒前
上官若男应助kemovezh采纳,获得10
17秒前
18秒前
19秒前
20秒前
zhanglh完成签到,获得积分10
20秒前
爱卿5271发布了新的文献求助10
22秒前
吴南宛发布了新的文献求助10
22秒前
ali8ba完成签到,获得积分10
22秒前
23秒前
Vicky完成签到 ,获得积分10
23秒前
24秒前
佰特瑞发布了新的文献求助10
25秒前
26秒前
Liudi发布了新的文献求助10
26秒前
希望天下0贩的0应助Jotaro采纳,获得10
27秒前
ali8ba发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956697
求助须知:如何正确求助?哪些是违规求助? 3502715
关于积分的说明 11109873
捐赠科研通 3233579
什么是DOI,文献DOI怎么找? 1787443
邀请新用户注册赠送积分活动 870685
科研通“疑难数据库(出版商)”最低求助积分说明 802152