Abstract 16189: Cardiovascular Risk Prediction Using Fully Automated Artificial Intelligence Algorithms for the Assessment of Right Ventricular Function From Cardiac Magnetic Resonance Images

医学 狼牙棒 算法 人工智能 心脏病学 机器学习 射血分数 内科学 计算机科学 心力衰竭 传统PCI 心肌梗塞
作者
Shuo Wang,Hena Patel,Tamari Miller,Keith Ameyaw,Akhil Narang,Daksh Chauhan,Stephanie A. Besser,Keigo Kawaji,Qiang Tang,Victor Mor‐Avi,Patel R Amit
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.16189
摘要

Background: It is unclear whether artificial intelligence (AI) can provide automatic solutions to measure right ventricular ejection fraction (RVEF), due to the complex RV geometry. Although several deep learning (DL) algorithms are available to quantify RVEF from cardiac magnetic resonance (CMR) images, there has been no systematic comparison of these algorithms, and the prognostic value of these automated measurements is unknown. We aimed to determine whether RVEF measurements made using DL algorithms could be used to risk stratify patients similarly to measurements made by an expert. Methods: We identified from a pre-existing registry 200 patients who underwent CMR. RVEF was determined using 3 fully automated commercial DL algorithms (DL-RVEF) and also by a clinical expert (CLIN-RVEF) using conventional methodology. Each of the DL-RVEF approaches was compared against CLIN-RVEF using linear regression and Bland-Altman analyses. In addition, RVEF values were classified according to clinically important cutoffs: <35%, 35-50%, ≥50%, and rates of disagreement with the reference classification were determined. ROC analysis was performed to evaluate the ability of CLIN-RVEF and each of the DL-RVEF based classifications to predict major adverse cardiovascular events (MACE). Results: The CLIN-RVEF and the three DL-RVEFs were obtained in all patients. We found only modest correlations between DL-RVEF and CLIN-RVEF (figure). The DL-RVEF algorithms had accuracy ranging from 0.59 to 0.78 for categorizing RV function. Nevertheless, ROC analysis showed no significant differences between the 4 approaches in predicting MACE, as reflected by respective AUC values of 0.68, 0.69, 0.64 and 0.63. Conclusions: Although the automated algorithms predicted patient outcomes as well as the CLIN-RVEF, the agreement between DL-RVEF and the clinical expert’s measurements was not optimal. DL approaches need further refinements to improve automated assessment of RV function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
son发布了新的文献求助10
1秒前
Criminology34应助Crab采纳,获得10
3秒前
3秒前
大模型应助归雁采纳,获得10
4秒前
Fi9zero发布了新的文献求助30
5秒前
5秒前
香蕉觅云应助han123123采纳,获得10
6秒前
莫西莫西发布了新的文献求助10
6秒前
嗯嗯发布了新的文献求助10
7秒前
peekaboo完成签到,获得积分10
8秒前
9秒前
郑传伟发布了新的文献求助10
11秒前
11秒前
12秒前
故酒应助嗯嗯采纳,获得10
14秒前
爆米花应助Catalysis123采纳,获得10
15秒前
赘婿应助忧郁的砖家采纳,获得10
16秒前
jiuwu完成签到,获得积分10
16秒前
橘子29发布了新的文献求助10
17秒前
17秒前
teamguichu完成签到 ,获得积分10
18秒前
20秒前
小蘑菇应助一一采纳,获得10
21秒前
21秒前
香蕉书兰完成签到,获得积分20
22秒前
哈哈哈完成签到,获得积分20
22秒前
陶佳仪发布了新的文献求助10
23秒前
hsj完成签到,获得积分10
23秒前
Jiang发布了新的文献求助10
24秒前
HMLM完成签到,获得积分10
25秒前
传奇3应助胡豆豆采纳,获得10
26秒前
子舆完成签到 ,获得积分10
26秒前
哈哈哈发布了新的文献求助10
26秒前
Jasper应助琪求好运采纳,获得10
27秒前
lalala发布了新的文献求助10
28秒前
29秒前
Lis发布了新的文献求助10
29秒前
31秒前
唐俊杰完成签到,获得积分10
31秒前
32秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Learning and Motivation in the Classroom 500
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5224818
求助须知:如何正确求助?哪些是违规求助? 4396749
关于积分的说明 13684880
捐赠科研通 4261194
什么是DOI,文献DOI怎么找? 2338338
邀请新用户注册赠送积分活动 1335711
关于科研通互助平台的介绍 1291564