清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Abstract 16189: Cardiovascular Risk Prediction Using Fully Automated Artificial Intelligence Algorithms for the Assessment of Right Ventricular Function From Cardiac Magnetic Resonance Images

医学 狼牙棒 算法 人工智能 心脏病学 机器学习 射血分数 内科学 计算机科学 心力衰竭 传统PCI 心肌梗塞
作者
Shuo Wang,Hena Patel,Tamari Miller,Keith Ameyaw,Akhil Narang,Daksh Chauhan,Stephanie A. Besser,Keigo Kawaji,Qiang Tang,Victor Mor‐Avi,Patel R Amit
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.16189
摘要

Background: It is unclear whether artificial intelligence (AI) can provide automatic solutions to measure right ventricular ejection fraction (RVEF), due to the complex RV geometry. Although several deep learning (DL) algorithms are available to quantify RVEF from cardiac magnetic resonance (CMR) images, there has been no systematic comparison of these algorithms, and the prognostic value of these automated measurements is unknown. We aimed to determine whether RVEF measurements made using DL algorithms could be used to risk stratify patients similarly to measurements made by an expert. Methods: We identified from a pre-existing registry 200 patients who underwent CMR. RVEF was determined using 3 fully automated commercial DL algorithms (DL-RVEF) and also by a clinical expert (CLIN-RVEF) using conventional methodology. Each of the DL-RVEF approaches was compared against CLIN-RVEF using linear regression and Bland-Altman analyses. In addition, RVEF values were classified according to clinically important cutoffs: <35%, 35-50%, ≥50%, and rates of disagreement with the reference classification were determined. ROC analysis was performed to evaluate the ability of CLIN-RVEF and each of the DL-RVEF based classifications to predict major adverse cardiovascular events (MACE). Results: The CLIN-RVEF and the three DL-RVEFs were obtained in all patients. We found only modest correlations between DL-RVEF and CLIN-RVEF (figure). The DL-RVEF algorithms had accuracy ranging from 0.59 to 0.78 for categorizing RV function. Nevertheless, ROC analysis showed no significant differences between the 4 approaches in predicting MACE, as reflected by respective AUC values of 0.68, 0.69, 0.64 and 0.63. Conclusions: Although the automated algorithms predicted patient outcomes as well as the CLIN-RVEF, the agreement between DL-RVEF and the clinical expert’s measurements was not optimal. DL approaches need further refinements to improve automated assessment of RV function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
21秒前
喵叽发布了新的文献求助10
27秒前
桐桐应助喵叽采纳,获得10
58秒前
平平平平完成签到 ,获得积分10
1分钟前
rockyshi完成签到 ,获得积分10
1分钟前
1分钟前
新新新新新发顶刊完成签到 ,获得积分10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
柚子完成签到 ,获得积分20
1分钟前
柚子关注了科研通微信公众号
1分钟前
猪嗝铁铁完成签到,获得积分10
1分钟前
文静如南完成签到 ,获得积分10
2分钟前
003完成签到,获得积分10
2分钟前
2分钟前
3分钟前
无悔完成签到 ,获得积分10
3分钟前
001完成签到,获得积分10
3分钟前
3分钟前
3分钟前
喵叽发布了新的文献求助10
3分钟前
锅包肉完成签到 ,获得积分10
3分钟前
002完成签到,获得积分10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
CodeCraft应助科研通管家采纳,获得10
3分钟前
Sandy完成签到,获得积分0
3分钟前
小白菜完成签到 ,获得积分10
3分钟前
3分钟前
digger2023完成签到 ,获得积分10
4分钟前
史琛完成签到,获得积分20
4分钟前
4分钟前
4分钟前
WenJun完成签到,获得积分10
5分钟前
5分钟前
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
科目三应助科研通管家采纳,获得10
5分钟前
史琛发布了新的文献求助10
5分钟前
乒坛巨人完成签到 ,获得积分10
5分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968504
求助须知:如何正确求助?哪些是违规求助? 3513331
关于积分的说明 11167297
捐赠科研通 3248697
什么是DOI,文献DOI怎么找? 1794417
邀请新用户注册赠送积分活动 875030
科研通“疑难数据库(出版商)”最低求助积分说明 804664