Abstract 16189: Cardiovascular Risk Prediction Using Fully Automated Artificial Intelligence Algorithms for the Assessment of Right Ventricular Function From Cardiac Magnetic Resonance Images

医学 狼牙棒 算法 人工智能 心脏病学 机器学习 射血分数 内科学 计算机科学 心力衰竭 传统PCI 心肌梗塞
作者
Shuo Wang,Hena Patel,Tamari Miller,Keith Ameyaw,Akhil Narang,Daksh Chauhan,Stephanie A. Besser,Keigo Kawaji,Qiang Tang,Victor Mor‐Avi,Patel R Amit
出处
期刊:Circulation [Lippincott Williams & Wilkins]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.16189
摘要

Background: It is unclear whether artificial intelligence (AI) can provide automatic solutions to measure right ventricular ejection fraction (RVEF), due to the complex RV geometry. Although several deep learning (DL) algorithms are available to quantify RVEF from cardiac magnetic resonance (CMR) images, there has been no systematic comparison of these algorithms, and the prognostic value of these automated measurements is unknown. We aimed to determine whether RVEF measurements made using DL algorithms could be used to risk stratify patients similarly to measurements made by an expert. Methods: We identified from a pre-existing registry 200 patients who underwent CMR. RVEF was determined using 3 fully automated commercial DL algorithms (DL-RVEF) and also by a clinical expert (CLIN-RVEF) using conventional methodology. Each of the DL-RVEF approaches was compared against CLIN-RVEF using linear regression and Bland-Altman analyses. In addition, RVEF values were classified according to clinically important cutoffs: <35%, 35-50%, ≥50%, and rates of disagreement with the reference classification were determined. ROC analysis was performed to evaluate the ability of CLIN-RVEF and each of the DL-RVEF based classifications to predict major adverse cardiovascular events (MACE). Results: The CLIN-RVEF and the three DL-RVEFs were obtained in all patients. We found only modest correlations between DL-RVEF and CLIN-RVEF (figure). The DL-RVEF algorithms had accuracy ranging from 0.59 to 0.78 for categorizing RV function. Nevertheless, ROC analysis showed no significant differences between the 4 approaches in predicting MACE, as reflected by respective AUC values of 0.68, 0.69, 0.64 and 0.63. Conclusions: Although the automated algorithms predicted patient outcomes as well as the CLIN-RVEF, the agreement between DL-RVEF and the clinical expert’s measurements was not optimal. DL approaches need further refinements to improve automated assessment of RV function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
Polarlicht完成签到,获得积分10
4秒前
媛媛完成签到,获得积分10
4秒前
傲娇颖完成签到,获得积分10
6秒前
ShellyMaya完成签到 ,获得积分10
7秒前
8秒前
一只大憨憨猫完成签到,获得积分10
8秒前
JJ完成签到,获得积分10
8秒前
DrW完成签到,获得积分10
8秒前
隐形曼青应助yue采纳,获得10
9秒前
ccyy完成签到 ,获得积分10
9秒前
NexusExplorer应助腾腾腾采纳,获得10
10秒前
宿帅帅完成签到,获得积分10
11秒前
11秒前
Ningxin完成签到,获得积分10
11秒前
HHEHK发布了新的文献求助10
11秒前
柚子完成签到 ,获得积分10
11秒前
雨辰完成签到,获得积分10
13秒前
宿帅帅发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
16秒前
16秒前
熠熠完成签到,获得积分10
16秒前
17秒前
zxzb完成签到,获得积分10
19秒前
苹果萧完成签到 ,获得积分10
22秒前
宋江他大表哥完成签到,获得积分10
22秒前
able发布了新的文献求助10
22秒前
王先生完成签到 ,获得积分10
23秒前
H.发布了新的文献求助10
23秒前
luoluo完成签到,获得积分10
24秒前
24秒前
高分子完成签到,获得积分10
24秒前
yian发布了新的文献求助10
25秒前
yar应助体贴凌柏采纳,获得10
26秒前
自由的雪一完成签到,获得积分10
26秒前
Ava应助李振博采纳,获得200
26秒前
JW发布了新的文献求助10
27秒前
无限的千凝完成签到 ,获得积分10
28秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029