Abstract 16189: Cardiovascular Risk Prediction Using Fully Automated Artificial Intelligence Algorithms for the Assessment of Right Ventricular Function From Cardiac Magnetic Resonance Images

医学 狼牙棒 算法 人工智能 心脏病学 机器学习 射血分数 内科学 计算机科学 心力衰竭 心肌梗塞 传统PCI
作者
Shuo Wang,Hena Patel,Tamari Miller,Keith Ameyaw,Akhil Narang,Daksh Chauhan,Stephanie A. Besser,Keigo Kawaji,Qiang Tang,Victor Mor‐Avi,Patel R Amit
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.16189
摘要

Background: It is unclear whether artificial intelligence (AI) can provide automatic solutions to measure right ventricular ejection fraction (RVEF), due to the complex RV geometry. Although several deep learning (DL) algorithms are available to quantify RVEF from cardiac magnetic resonance (CMR) images, there has been no systematic comparison of these algorithms, and the prognostic value of these automated measurements is unknown. We aimed to determine whether RVEF measurements made using DL algorithms could be used to risk stratify patients similarly to measurements made by an expert. Methods: We identified from a pre-existing registry 200 patients who underwent CMR. RVEF was determined using 3 fully automated commercial DL algorithms (DL-RVEF) and also by a clinical expert (CLIN-RVEF) using conventional methodology. Each of the DL-RVEF approaches was compared against CLIN-RVEF using linear regression and Bland-Altman analyses. In addition, RVEF values were classified according to clinically important cutoffs: <35%, 35-50%, ≥50%, and rates of disagreement with the reference classification were determined. ROC analysis was performed to evaluate the ability of CLIN-RVEF and each of the DL-RVEF based classifications to predict major adverse cardiovascular events (MACE). Results: The CLIN-RVEF and the three DL-RVEFs were obtained in all patients. We found only modest correlations between DL-RVEF and CLIN-RVEF (figure). The DL-RVEF algorithms had accuracy ranging from 0.59 to 0.78 for categorizing RV function. Nevertheless, ROC analysis showed no significant differences between the 4 approaches in predicting MACE, as reflected by respective AUC values of 0.68, 0.69, 0.64 and 0.63. Conclusions: Although the automated algorithms predicted patient outcomes as well as the CLIN-RVEF, the agreement between DL-RVEF and the clinical expert’s measurements was not optimal. DL approaches need further refinements to improve automated assessment of RV function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SUNYAOSUNYAO发布了新的文献求助10
刚刚
小马甲应助京墨襦采纳,获得10
刚刚
1秒前
脑洞疼应助黄石采纳,获得10
1秒前
1秒前
噼里啪啦完成签到,获得积分10
1秒前
wsn发布了新的文献求助10
2秒前
所所应助xiaolu采纳,获得10
2秒前
2秒前
蟹不肉发布了新的文献求助10
3秒前
含蓄高山发布了新的文献求助10
3秒前
陈文学发布了新的文献求助10
3秒前
Chezy发布了新的文献求助10
3秒前
秦宇麒发布了新的文献求助10
4秒前
4秒前
我爱学习发布了新的文献求助10
4秒前
周ZHOU发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
知学术发布了新的文献求助30
5秒前
吴小根发布了新的文献求助10
5秒前
斯尼奇发布了新的文献求助10
5秒前
5秒前
LiuChuannan完成签到 ,获得积分10
5秒前
6秒前
微微完成签到,获得积分10
6秒前
高兴的酒窝完成签到 ,获得积分10
7秒前
7秒前
所所应助有且仅有采纳,获得10
7秒前
英姑应助千葉采纳,获得10
7秒前
7秒前
7秒前
我问问发布了新的文献求助10
8秒前
小马甲应助hui_L采纳,获得10
8秒前
彭于晏应助吉良吉影采纳,获得10
8秒前
求rrr发布了新的文献求助10
9秒前
MICO完成签到,获得积分10
9秒前
9秒前
欢喜的映易关注了科研通微信公众号
9秒前
啦啦啦发布了新的文献求助10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661525
求助须知:如何正确求助?哪些是违规求助? 4838950
关于积分的说明 15096313
捐赠科研通 4820245
什么是DOI,文献DOI怎么找? 2579795
邀请新用户注册赠送积分活动 1534060
关于科研通互助平台的介绍 1492773