亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Abstract 16189: Cardiovascular Risk Prediction Using Fully Automated Artificial Intelligence Algorithms for the Assessment of Right Ventricular Function From Cardiac Magnetic Resonance Images

医学 狼牙棒 算法 人工智能 心脏病学 机器学习 射血分数 内科学 计算机科学 心力衰竭 心肌梗塞 传统PCI
作者
Shuo Wang,Hena Patel,Tamari Miller,Keith Ameyaw,Akhil Narang,Daksh Chauhan,Stephanie A. Besser,Keigo Kawaji,Qiang Tang,Victor Mor‐Avi,Patel R Amit
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.16189
摘要

Background: It is unclear whether artificial intelligence (AI) can provide automatic solutions to measure right ventricular ejection fraction (RVEF), due to the complex RV geometry. Although several deep learning (DL) algorithms are available to quantify RVEF from cardiac magnetic resonance (CMR) images, there has been no systematic comparison of these algorithms, and the prognostic value of these automated measurements is unknown. We aimed to determine whether RVEF measurements made using DL algorithms could be used to risk stratify patients similarly to measurements made by an expert. Methods: We identified from a pre-existing registry 200 patients who underwent CMR. RVEF was determined using 3 fully automated commercial DL algorithms (DL-RVEF) and also by a clinical expert (CLIN-RVEF) using conventional methodology. Each of the DL-RVEF approaches was compared against CLIN-RVEF using linear regression and Bland-Altman analyses. In addition, RVEF values were classified according to clinically important cutoffs: <35%, 35-50%, ≥50%, and rates of disagreement with the reference classification were determined. ROC analysis was performed to evaluate the ability of CLIN-RVEF and each of the DL-RVEF based classifications to predict major adverse cardiovascular events (MACE). Results: The CLIN-RVEF and the three DL-RVEFs were obtained in all patients. We found only modest correlations between DL-RVEF and CLIN-RVEF (figure). The DL-RVEF algorithms had accuracy ranging from 0.59 to 0.78 for categorizing RV function. Nevertheless, ROC analysis showed no significant differences between the 4 approaches in predicting MACE, as reflected by respective AUC values of 0.68, 0.69, 0.64 and 0.63. Conclusions: Although the automated algorithms predicted patient outcomes as well as the CLIN-RVEF, the agreement between DL-RVEF and the clinical expert’s measurements was not optimal. DL approaches need further refinements to improve automated assessment of RV function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沉静摇伽发布了新的文献求助10
4秒前
banbieshenlu完成签到,获得积分10
6秒前
8秒前
ding应助taysun采纳,获得10
9秒前
9秒前
Shihan完成签到,获得积分10
11秒前
牛肉面完成签到,获得积分10
14秒前
小马甲应助大力的图图采纳,获得10
14秒前
生椰拿铁发布了新的文献求助10
15秒前
在水一方应助Shihan采纳,获得10
16秒前
whick发布了新的文献求助10
17秒前
23秒前
忽远忽近的她完成签到 ,获得积分10
25秒前
25秒前
量子星尘发布了新的文献求助10
25秒前
喵了个咪发布了新的文献求助10
28秒前
晴朗完成签到 ,获得积分10
28秒前
米龙完成签到,获得积分10
31秒前
ssch197完成签到 ,获得积分10
31秒前
彭于晏应助凡凡采纳,获得30
34秒前
喵了个咪完成签到 ,获得积分10
38秒前
42秒前
Chris完成签到 ,获得积分10
45秒前
46秒前
凡凡发布了新的文献求助30
47秒前
49秒前
科研通AI2S应助李联洪采纳,获得10
57秒前
科研通AI2S应助Shihan采纳,获得10
58秒前
onelastkiss给onelastkiss的求助进行了留言
59秒前
1分钟前
1分钟前
1分钟前
1分钟前
江流儿完成签到,获得积分10
1分钟前
1分钟前
雪白冥茗完成签到 ,获得积分10
1分钟前
卷毛维安发布了新的文献求助10
1分钟前
JIE完成签到 ,获得积分10
1分钟前
bbhk完成签到,获得积分10
1分钟前
Orange应助耕云钓月采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772284
求助须知:如何正确求助?哪些是违规求助? 5597270
关于积分的说明 15429424
捐赠科研通 4905304
什么是DOI,文献DOI怎么找? 2639326
邀请新用户注册赠送积分活动 1587253
关于科研通互助平台的介绍 1542112