已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Abstract 16189: Cardiovascular Risk Prediction Using Fully Automated Artificial Intelligence Algorithms for the Assessment of Right Ventricular Function From Cardiac Magnetic Resonance Images

医学 狼牙棒 算法 人工智能 心脏病学 机器学习 射血分数 内科学 计算机科学 心力衰竭 传统PCI 心肌梗塞
作者
Shuo Wang,Hena Patel,Tamari Miller,Keith Ameyaw,Akhil Narang,Daksh Chauhan,Stephanie A. Besser,Keigo Kawaji,Qiang Tang,Victor Mor‐Avi,Patel R Amit
出处
期刊:Circulation [Ovid Technologies (Wolters Kluwer)]
卷期号:142 (Suppl_3)
标识
DOI:10.1161/circ.142.suppl_3.16189
摘要

Background: It is unclear whether artificial intelligence (AI) can provide automatic solutions to measure right ventricular ejection fraction (RVEF), due to the complex RV geometry. Although several deep learning (DL) algorithms are available to quantify RVEF from cardiac magnetic resonance (CMR) images, there has been no systematic comparison of these algorithms, and the prognostic value of these automated measurements is unknown. We aimed to determine whether RVEF measurements made using DL algorithms could be used to risk stratify patients similarly to measurements made by an expert. Methods: We identified from a pre-existing registry 200 patients who underwent CMR. RVEF was determined using 3 fully automated commercial DL algorithms (DL-RVEF) and also by a clinical expert (CLIN-RVEF) using conventional methodology. Each of the DL-RVEF approaches was compared against CLIN-RVEF using linear regression and Bland-Altman analyses. In addition, RVEF values were classified according to clinically important cutoffs: <35%, 35-50%, ≥50%, and rates of disagreement with the reference classification were determined. ROC analysis was performed to evaluate the ability of CLIN-RVEF and each of the DL-RVEF based classifications to predict major adverse cardiovascular events (MACE). Results: The CLIN-RVEF and the three DL-RVEFs were obtained in all patients. We found only modest correlations between DL-RVEF and CLIN-RVEF (figure). The DL-RVEF algorithms had accuracy ranging from 0.59 to 0.78 for categorizing RV function. Nevertheless, ROC analysis showed no significant differences between the 4 approaches in predicting MACE, as reflected by respective AUC values of 0.68, 0.69, 0.64 and 0.63. Conclusions: Although the automated algorithms predicted patient outcomes as well as the CLIN-RVEF, the agreement between DL-RVEF and the clinical expert’s measurements was not optimal. DL approaches need further refinements to improve automated assessment of RV function.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷炫的冰淇淋完成签到,获得积分10
刚刚
Lucas应助知性的采珊采纳,获得10
1秒前
小杭76应助柔弱嵩采纳,获得10
3秒前
5秒前
5秒前
guojingjing发布了新的文献求助10
5秒前
安小敏发布了新的文献求助10
6秒前
小郑不睡觉完成签到 ,获得积分10
6秒前
7秒前
8秒前
Demon应助酷炫的冰淇淋采纳,获得10
8秒前
9秒前
芸珂发布了新的文献求助10
9秒前
10秒前
13秒前
充电宝应助liuynnn采纳,获得30
13秒前
坦率灵槐应助ppzz1220采纳,获得10
13秒前
16秒前
16秒前
梅梅也完成签到,获得积分10
17秒前
酷波er应助Serrinixia采纳,获得10
19秒前
19秒前
funnyelephant完成签到 ,获得积分10
21秒前
善学以致用应助倪妮采纳,获得10
21秒前
dsfdsaf发布了新的文献求助10
21秒前
瘦瘦完成签到,获得积分10
23秒前
24秒前
24秒前
坦率灵槐应助ppzz1220采纳,获得10
26秒前
26秒前
汉堡包应助cc采纳,获得10
27秒前
27秒前
平淡傲南发布了新的文献求助10
29秒前
whoknowsname发布了新的文献求助10
29秒前
liuynnn发布了新的文献求助30
30秒前
TT发布了新的文献求助10
30秒前
bingyv完成签到 ,获得积分10
32秒前
33秒前
绝缘的稳健完成签到,获得积分10
33秒前
raoarao完成签到 ,获得积分10
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300903
求助须知:如何正确求助?哪些是违规求助? 4448717
关于积分的说明 13846704
捐赠科研通 4334501
什么是DOI,文献DOI怎么找? 2379689
邀请新用户注册赠送积分活动 1374783
关于科研通互助平台的介绍 1340460