点式的
数学
有限元法
应用数学
正规化(语言学)
反问题
反向
逐点收敛
偏微分方程
趋同(经济学)
数学优化
数学分析
计算机科学
几何学
操作系统
物理
热力学
人工智能
经济
经济增长
大约
作者
Zhiming Chen,Wenlong Zhang,Jun Zou
摘要
In this work, we investigate the regularized solutions and their finite element solutions to the inverse source problems governed by partial differential equations, and we establish the stochastic convergence and optimal finite element convergence rates of these solutions under pointwise measurement data with random noise. The regularization error estimates and the finite element error estimates are derived with explicit dependence on the noise level, regularization parameter, mesh size, and time step size, which can guide practical choices among these key parameters in real applications. The error estimates also suggest an iterative algorithm for determining an optimal regularization parameter. Numerical experiments are presented to demonstrate the effectiveness of the analytical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI