单倍型
参考基因组
计算生物学
人口
RNA序列
计算机科学
工作流程
工具链
转录组
基因组
生物
遗传学
基因
基因表达
数据库
基因型
软件
程序设计语言
人口学
社会学
作者
Jonas A. Sibbesen,Jordan M. Eizenga,Adam M. Novak,Jouni Sirén,Xian Chang,Erik Garrison,Benedict Paten
标识
DOI:10.1101/2021.03.26.437240
摘要
Abstract Pangenomics is emerging as a powerful computational paradigm in bioinformatics. This field uses population-level genome reference structures, typically consisting of a sequence graph, to mitigate reference bias and facilitate analyses that were challenging with previous reference-based methods. In this work, we extend these methods into transcriptomics to analyze sequencing data using the pantranscriptome: a population-level transcriptomic reference. Our novel toolchain can construct spliced pangenome graphs, map RNA-seq data to these graphs, and perform haplotype-aware expression quantification of transcripts in a pantranscriptome. This workflow improves accuracy over state-of-the-art RNA-seq mapping methods, and it can efficiently quantify haplotype-specific transcript expression without needing to characterize a sample’s haplotypes beforehand.
科研通智能强力驱动
Strongly Powered by AbleSci AI