表皮生长因子受体
酪氨酸激酶
吉非替尼
阿法替尼
受体酪氨酸激酶
后天抵抗
化学
埃罗替尼
酪氨酸激酶抑制剂
生物
激酶
作者
Lei Zhu,Zhen Chen,Hongjing Zang,Songqing Fan,Jiajia Gu,Guojing Zhang,Kevin D.-Y. Sun,Qiming Wang,Yong He,Taofeek K. Owonikoko,Suresh S. Ramalingam,Shi-Yong Sun
出处
期刊:Cancer Research
[American Association for Cancer Research]
日期:2021-09-15
卷期号:81 (18): 4822-4834
被引量:1
标识
DOI:10.1158/0008-5472.can-21-0556
摘要
Osimertinib (AZD9291 or TAGRISSO) is a promising and approved third-generation EGFR tyrosine kinase inhibitor (TKI) for treating patients with advanced non–small cell lung cancer (NSCLC) harboring EGFR-activating mutations or the resistant T790M mutation. However, the inevitable emergence of acquired resistance limits its long-term efficacy. A fuller understanding of the mechanism of action of osimertinib and its linkage to acquired resistance will enable the development of more efficacious therapeutic strategies. Consequently, we have identified a novel connection between osimertinib or other EGFR-TKIs and c-Myc. Osimertinib rapidly and sustainably decreased c-Myc levels primarily via enhancing protein degradation in EGFR-mutant (EGFRm) NSCLC cell lines and xenograft tumors. c-Myc levels were substantially elevated in different EGFRm NSCLC cell lines with acquired resistance to osimertinib in comparison with their corresponding parental cell lines and could not be reduced any further by osimertinib. Consistently, c-Myc levels were elevated in the majority of EGFRm NSCLC tissues relapsed from EGFR-TKI treatment compared with their corresponding untreated baseline c-Myc levels. Suppression of c-Myc through knockdown or pharmacologic targeting with BET inhibitors restored the response of resistant cell lines to osimertinib. These findings indicate that c-Myc modulation mediates the therapeutic efficacy of osimertinib and the development of osimertinib acquired resistance. Furthermore, they establish c-Myc as a potential therapeutic target and warrant clinical testing of BET inhibition as a potential strategy to overcome acquired resistance to osimertinib or other EGFR inhibitors. Significance: This study demonstrates a critical role of c-Myc modulation in mediating therapeutic efficacy of osimertinib including osimertinib acquired resistance and suggests targeting c-Myc as a potential strategy to overcome osimertinib acquired resistance.
科研通智能强力驱动
Strongly Powered by AbleSci AI