亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A CNN-LSTM BASED DEEP NEURAL NETWORKS FOR FACIAL EMOTION DETECTION IN VIDEOS

厌恶 面部表情 卷积神经网络 计算机科学 情绪分类 领域(数学) 面子(社会学概念) 人工智能 深度学习 理解力 情感计算 情绪分析 认知心理学 愤怒 心理学 社会心理学 社会学 社会科学 程序设计语言 纯数学 数学
作者
Arnold Sachith A Hans,Smitha Rao
出处
期刊:International journal of advances in signal and image sciences [XLE Science]
卷期号:7 (1): 11-20 被引量:35
标识
DOI:10.29284/ijasis.7.1.2021.11-20
摘要

Human beings while communicating use emotions as a medium to understand the other person. Face being the primary source of contact while communicating and being the most communicative component of the body for exhibiting emotions, facial emotion detection in videos has been a challenging and an interesting problem to be addressed. The Facial expressions fall under the category of non-verbal type of communication and understanding Emotional state of a person through Facial Expressions has many use cases such as in the field of marketing research – understanding the customers responses for various products, Virtual classroom – understanding the comprehension level of the students, Job Interview – in understanding the changes in emotional state of the Interviewee, etc. This research paper proposes a CNN- LSTM based Neural Network which has been trained on CREMA-D dataset and tested on RAVDEES dataset for six basic emotions i.e. Angry, Happy, Sad, Fear, Disgust, and Neutral. The Faces in the videos were masked using Open Face software which gets the attention on the Face ignoring the background, which were further fed to the Convolutional Neural Network. The research focuses on using LSTM networks which have the capability of using the series of data which will aid in the final prediction of emotions in a video. We achieved an accuracy of 78.52% on CREMA-D dataset and further also tested the model on RAVDEES dataset and achieved an accuracy of 63.35%. This research work will help in making machines understand emotions, can help systems make better decisions and respond accordingly to the user.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1234完成签到,获得积分10
35秒前
Panther完成签到,获得积分10
1分钟前
1分钟前
1分钟前
fengfenghao完成签到,获得积分10
1分钟前
燕晓啸完成签到 ,获得积分0
2分钟前
今后应助羫孔采纳,获得10
2分钟前
2分钟前
2分钟前
羫孔发布了新的文献求助10
2分钟前
赘婿应助羫孔采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
CC完成签到,获得积分10
3分钟前
DONG完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
5分钟前
一_发布了新的文献求助10
5分钟前
CipherSage应助一_采纳,获得10
6分钟前
6分钟前
Orange应助神说要有光采纳,获得10
6分钟前
一_发布了新的文献求助10
6分钟前
古炮完成签到 ,获得积分10
7分钟前
7分钟前
贾南烟完成签到,获得积分10
7分钟前
贾南烟发布了新的文献求助10
7分钟前
7分钟前
吕佳完成签到 ,获得积分10
7分钟前
星宫金魁完成签到 ,获得积分10
8分钟前
星宫韩立完成签到 ,获得积分10
8分钟前
HS完成签到,获得积分10
9分钟前
9分钟前
NexusExplorer应助体贴花卷采纳,获得10
9分钟前
9分钟前
科研通AI2S应助科研通管家采纳,获得10
9分钟前
chiazy完成签到 ,获得积分10
10分钟前
10分钟前
希望天下0贩的0应助羫孔采纳,获得10
10分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3314409
求助须知:如何正确求助?哪些是违规求助? 2946641
关于积分的说明 8531258
捐赠科研通 2622409
什么是DOI,文献DOI怎么找? 1434493
科研通“疑难数据库(出版商)”最低求助积分说明 665329
邀请新用户注册赠送积分活动 650881