作者
Jing Xu,Lawrence S. Engel,Joyce A. Rhoden,W. Braxton Jackson,Richard K. Kwok,Dale P. Sandler
摘要
Both essential and non-essential metals come from natural and anthropogenic sources. Metals can bioaccumulate in humans and may impact human health, including hypertension.Blood metal (cadmium, lead, mercury, manganese, and selenium) concentrations were measured at baseline for a sample of participants in the Gulf Long-Term Follow-up (GuLF) Study. The GuLF Study is a prospective cohort study focused on potential health effects following the 2010 Deepwater Horizon oil spill. Hypertension was defined as high systolic (≥140 mm Hg) or diastolic (≥90 mm Hg) blood pressure or taking anti-hypertensive medications. A total of 957 participants who had blood measurement for at least one metal, baseline blood pressure measurements, information on any anti-hypertensive medication use, and relevant covariates were included in this cross-sectional analysis. We used Poisson regression to explore the association between individual blood metal levels and hypertension. Quantile-based g-computation was used to investigate the association between the metal mixture and hypertension. We also explored the association between individual blood metal levels and continuous blood pressure measurements using general linear regression.Comparing the highest quartile of blood metals with the lowest (Q4vs1), the hypertension prevalence ratio (PR) was 0.92 (95 % confidence interval (CI) = 0.73,1.15) for cadmium, 0.86 (95%CI = 0.66,1.12) for lead, 0.89 (95%CI = 0.71,1.12) for mercury, 1.00 (95%CI = 0.80,1.26) for selenium, and 1.22 (95%CI = 0.95,1.57) for manganese. We observed some qualitative differences across race and BMI strata although none of these differences were statistically significant. In stratified analyses, the PR (Q4vs1) for mercury was 0.69 (95%CI = 0.53, 0.91) in White participants and 1.29 (95%CI = 0.86,1.92) in Black participants (p for interaction = 0.5). The PR (Q4vs1) for manganese was relatively higher in Black participants (PR = 1.37, 95%CI = 0.92,2.05) than in White participants (PR = 1.15, 95%CI = 0.83,1.60, p for interaction = 0.5), with a suggestive dose-response among Blacks. After stratifying by obesity (BMI ≥30 and < 30), positive associations of of hypertension with cadmium (PR [Q4vs1] = 1.19, 95%CI = 0.91,1.56, p for interaction = 0.5), lead (PR [Q4vs1] = 1.14, 95%CI = 0.84,1.55, p for interaction = 1.0) and manganese (PR = 1.25, 95%CI = 0.93,1.68, p for interaction = 0.8) were observed in participants with BMI≥30, but not in participants with BMI<30. The joint effect of the metal mixture was 0.96 (95%CI = 0.73,1.27). We did not observe clear associations between blood metal levels and continuous blood pressure measurements.We did not find overall cross-sectional associations between blood cadmium, lead, mercury, selenium levels and hypertension or blood pressure. We found some evidence suggesting that manganese might be positively associated with risk of hypertension. Associations varied somewhat by race and BMI.