High-Quality Stereo Image Restoration from Double Refraction

计算机视觉 计算机科学 图像复原 人工智能 折射 图像质量 质量(理念) 计算机图形学(图像)
作者
Hakyeong Kim,Andreas Meuleman,Daniel S. Jeon,Min H. Kim
出处
期刊:Computer Vision and Pattern Recognition
标识
DOI:10.1109/cvpr46437.2021.01181
摘要

Single-shot monocular birefractive stereo methods have been used for estimating sparse depth from double refraction over edges. They also obtain an ordinary-ray (oray) image concurrently or subsequently through additional post-processing of depth densification and deconvolution. However, when an extraordinary-ray (e-ray) image is restored to acquire stereo images, the existing methods suffer from very severe restoration artifacts due to a low signal-to-noise ratio of input e-ray image or depth/deconvolution errors. In this work, we present a novel stereo image restoration network that can restore stereo images directly from a double-refraction image. First, we built a physically faithful birefractive stereo imaging dataset by simulating the double refraction phenomenon with existing RGB-D datasets. Second, we formulated a joint stereo restoration problem that accounts for not only geometric relation between o/e-ray images but also joint optimization of restoring both stereo images. We trained our model with our birefractive image dataset in an end-to-end manner. Our model restores high-quality stereo images directly from double refraction in real-time, enabling high-quality stereo video using a monocular camera. Our method also allows us to estimate dense depth maps from stereo images using a conventional stereo method. We evaluate the performance of our method experimentally and synthetically with the ground truth. Results validate that our stereo image restoration network outperforms the existing methods with high accuracy. We demonstrate several image-editing applications using our high-quality stereo images and dense depth maps.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
朴素鹏煊完成签到,获得积分10
刚刚
weiba完成签到,获得积分10
4秒前
怕黑半仙完成签到,获得积分10
4秒前
4秒前
5秒前
科研通AI5应助lurongjun采纳,获得10
6秒前
芊慧发布了新的文献求助10
7秒前
猪猪hero应助江苏吴世勋采纳,获得10
7秒前
7秒前
7秒前
充电宝应助zhengnan666采纳,获得10
8秒前
xiaoxiao完成签到 ,获得积分10
8秒前
爆米花应助ytttt采纳,获得10
9秒前
qwf完成签到 ,获得积分10
9秒前
9秒前
在水一方应助星星采纳,获得10
9秒前
个性涵菡完成签到 ,获得积分10
10秒前
如沐春风发布了新的文献求助10
12秒前
姚翔发布了新的文献求助10
13秒前
15秒前
科研通AI5应助怡然的向南采纳,获得10
17秒前
17秒前
17秒前
17秒前
lurongjun完成签到,获得积分20
18秒前
18秒前
seven完成签到,获得积分20
18秒前
mr完成签到,获得积分10
18秒前
21秒前
21秒前
lurongjun发布了新的文献求助10
21秒前
柚子发布了新的文献求助10
22秒前
科研通AI5应助如沐春风采纳,获得10
22秒前
22秒前
莫氓发布了新的文献求助10
22秒前
苏小舟发布了新的文献求助10
22秒前
小巧的寻双完成签到 ,获得积分10
23秒前
lucky完成签到 ,获得积分10
23秒前
欧阳发布了新的文献求助10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672962
求助须知:如何正确求助?哪些是违规求助? 3228958
关于积分的说明 9782894
捐赠科研通 2939348
什么是DOI,文献DOI怎么找? 1610933
邀请新用户注册赠送积分活动 760771
科研通“疑难数据库(出版商)”最低求助积分说明 736235