Matching IRT Models to Patient-Reported Outcomes Constructs: The Graded Response and Log-Logistic Models for Scaling Depression

项目反应理论 心理测量学 构造(python库) 逻辑回归 匹配(统计) 心理学 缩放比例 认知 多维标度 计量经济学 认知心理学 度量(数据仓库) 统计
作者
Steven P. Reise,Huiqin Du,Emily Wong,Anne S. Hubbard,Mark G. Haviland
出处
期刊:Psychometrika [Springer Nature]
卷期号:86 (3): 800-824 被引量:9
标识
DOI:10.1007/s11336-021-09802-0
摘要

Item response theory (IRT) model applications extend well beyond cognitive ability testing, and various patient-reported outcomes (PRO) measures are among the more prominent examples. PRO (and like) constructs differ from cognitive ability constructs in many ways, and these differences have model fitting implications. With a few notable exceptions, however, most IRT applications to PRO constructs rely on traditional IRT models, such as the graded response model. We review some notable differences between cognitive and PRO constructs and how these differences can present challenges for traditional IRT model applications. We then apply two models (the traditional graded response model and an alternative log-logistic model) to depression measure data drawn from the Patient-Reported Outcomes Measurement Information System project. We do not claim that one model is "a better fit" or more "valid" than the other; rather, we show that the log-logistic model may be more consistent with the construct of depression as a unipolar phenomenon. Clearly, the graded response and log-logistic models can lead to different conclusions about the psychometrics of an instrument and the scaling of individual differences. We underscore, too, that, in general, explorations of which model may be more appropriate cannot be decided only by fit index comparisons; these decisions may require the integration of psychometrics with theory and research findings on the construct of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
斯文哈密瓜完成签到,获得积分10
2秒前
2秒前
2秒前
ray发布了新的文献求助10
2秒前
XXXTTT完成签到,获得积分10
2秒前
英俊的铭应助qwer采纳,获得10
3秒前
li发布了新的文献求助10
3秒前
3秒前
Psycho完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
隐形曼青应助ran采纳,获得10
4秒前
上官若男应助内向煎蛋采纳,获得10
5秒前
Akim应助T拐拐采纳,获得10
5秒前
6秒前
aodilee应助邱穗采纳,获得10
6秒前
王大雪发布了新的文献求助30
6秒前
7秒前
朱朱发布了新的文献求助10
8秒前
ktssly发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
11秒前
11秒前
Silence完成签到,获得积分0
11秒前
12秒前
Ava应助Jayee采纳,获得10
12秒前
lucky发布了新的文献求助20
12秒前
junjun发布了新的文献求助10
13秒前
李健应助Leon采纳,获得10
13秒前
13秒前
13秒前
13秒前
KON发布了新的文献求助10
13秒前
棉花完成签到 ,获得积分10
14秒前
14秒前
内向煎蛋完成签到,获得积分20
14秒前
锐意完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728