Matching IRT Models to Patient-Reported Outcomes Constructs: The Graded Response and Log-Logistic Models for Scaling Depression

项目反应理论 心理测量学 构造(python库) 逻辑回归 匹配(统计) 心理学 缩放比例 认知 多维标度 计量经济学 认知心理学 度量(数据仓库) 统计
作者
Steven P. Reise,Huiqin Du,Emily Wong,Anne S. Hubbard,Mark G. Haviland
出处
期刊:Psychometrika [Springer Nature]
卷期号:86 (3): 800-824 被引量:9
标识
DOI:10.1007/s11336-021-09802-0
摘要

Item response theory (IRT) model applications extend well beyond cognitive ability testing, and various patient-reported outcomes (PRO) measures are among the more prominent examples. PRO (and like) constructs differ from cognitive ability constructs in many ways, and these differences have model fitting implications. With a few notable exceptions, however, most IRT applications to PRO constructs rely on traditional IRT models, such as the graded response model. We review some notable differences between cognitive and PRO constructs and how these differences can present challenges for traditional IRT model applications. We then apply two models (the traditional graded response model and an alternative log-logistic model) to depression measure data drawn from the Patient-Reported Outcomes Measurement Information System project. We do not claim that one model is "a better fit" or more "valid" than the other; rather, we show that the log-logistic model may be more consistent with the construct of depression as a unipolar phenomenon. Clearly, the graded response and log-logistic models can lead to different conclusions about the psychometrics of an instrument and the scaling of individual differences. We underscore, too, that, in general, explorations of which model may be more appropriate cannot be decided only by fit index comparisons; these decisions may require the integration of psychometrics with theory and research findings on the construct of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
cheezle完成签到,获得积分10
1秒前
大饼完成签到,获得积分10
2秒前
老实棒棒糖关注了科研通微信公众号
2秒前
六五发布了新的文献求助10
3秒前
3秒前
风筝鱼发布了新的文献求助30
3秒前
4秒前
4秒前
5秒前
lym54发布了新的文献求助10
5秒前
调皮的笑阳完成签到 ,获得积分10
6秒前
6秒前
李琳完成签到,获得积分10
6秒前
如意觅露发布了新的文献求助10
7秒前
长生完成签到,获得积分10
7秒前
9秒前
9秒前
9秒前
饶天源发布了新的文献求助10
10秒前
我先睡了完成签到,获得积分10
11秒前
李健应助FFF采纳,获得10
12秒前
大饼发布了新的文献求助10
13秒前
钱多多完成签到,获得积分10
13秒前
啸西风完成签到,获得积分10
13秒前
三七完成签到 ,获得积分10
14秒前
小蘑菇应助perdgs采纳,获得10
14秒前
wangdada完成签到,获得积分10
16秒前
LG完成签到 ,获得积分10
16秒前
科研通AI6应助桃博采纳,获得10
16秒前
完美世界应助KYG采纳,获得10
16秒前
SciGPT应助Benji采纳,获得10
17秒前
17秒前
18秒前
Curry完成签到 ,获得积分10
20秒前
甜美的沅完成签到 ,获得积分10
20秒前
浮游应助文静修杰采纳,获得10
20秒前
熊月完成签到,获得积分20
20秒前
Tanyang完成签到 ,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286706
求助须知:如何正确求助?哪些是违规求助? 4439351
关于积分的说明 13821187
捐赠科研通 4321274
什么是DOI,文献DOI怎么找? 2371784
邀请新用户注册赠送积分活动 1367335
关于科研通互助平台的介绍 1330812