Matching IRT Models to Patient-Reported Outcomes Constructs: The Graded Response and Log-Logistic Models for Scaling Depression

项目反应理论 心理测量学 构造(python库) 逻辑回归 匹配(统计) 心理学 缩放比例 认知 多维标度 计量经济学 认知心理学 度量(数据仓库) 统计
作者
Steven P. Reise,Huiqin Du,Emily Wong,Anne S. Hubbard,Mark G. Haviland
出处
期刊:Psychometrika [Springer Nature]
卷期号:86 (3): 800-824 被引量:9
标识
DOI:10.1007/s11336-021-09802-0
摘要

Item response theory (IRT) model applications extend well beyond cognitive ability testing, and various patient-reported outcomes (PRO) measures are among the more prominent examples. PRO (and like) constructs differ from cognitive ability constructs in many ways, and these differences have model fitting implications. With a few notable exceptions, however, most IRT applications to PRO constructs rely on traditional IRT models, such as the graded response model. We review some notable differences between cognitive and PRO constructs and how these differences can present challenges for traditional IRT model applications. We then apply two models (the traditional graded response model and an alternative log-logistic model) to depression measure data drawn from the Patient-Reported Outcomes Measurement Information System project. We do not claim that one model is "a better fit" or more "valid" than the other; rather, we show that the log-logistic model may be more consistent with the construct of depression as a unipolar phenomenon. Clearly, the graded response and log-logistic models can lead to different conclusions about the psychometrics of an instrument and the scaling of individual differences. We underscore, too, that, in general, explorations of which model may be more appropriate cannot be decided only by fit index comparisons; these decisions may require the integration of psychometrics with theory and research findings on the construct of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
PakhoPHD完成签到 ,获得积分10
刚刚
wenx发布了新的文献求助10
刚刚
踏雪飞鸿发布了新的文献求助10
1秒前
火星上的听云完成签到,获得积分10
1秒前
打打应助酒酿采纳,获得10
2秒前
牛蛙点点完成签到,获得积分10
2秒前
3秒前
3秒前
Fyf333发布了新的文献求助10
3秒前
3秒前
柔弱的踏歌发布了新的文献求助200
4秒前
4秒前
4秒前
司南应助魔幻的白筠采纳,获得10
4秒前
科研通AI2S应助养乐多采纳,获得10
4秒前
5秒前
爱笑的傲薇完成签到,获得积分20
5秒前
努力做科研的打工人完成签到,获得积分20
6秒前
6秒前
彭于晏应助傲娇曼凝采纳,获得10
6秒前
6秒前
新新大王发布了新的文献求助10
7秒前
清脆怜寒关注了科研通微信公众号
7秒前
韩靖仇完成签到,获得积分10
7秒前
8秒前
9秒前
闾丘惜萱发布了新的文献求助10
9秒前
zsy真帅呀发布了新的文献求助10
10秒前
积极问晴发布了新的文献求助10
10秒前
10秒前
linciko发布了新的文献求助10
11秒前
行宇发布了新的文献求助10
12秒前
13秒前
13秒前
push发布了新的文献求助10
14秒前
jiabaoyu发布了新的文献求助10
14秒前
14秒前
晓雅完成签到,获得积分20
15秒前
15秒前
酷酷冬莲发布了新的文献求助20
16秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128551
求助须知:如何正确求助?哪些是违规求助? 2779326
关于积分的说明 7742499
捐赠科研通 2434629
什么是DOI,文献DOI怎么找? 1293580
科研通“疑难数据库(出版商)”最低求助积分说明 623344
版权声明 600514