Matching IRT Models to Patient-Reported Outcomes Constructs: The Graded Response and Log-Logistic Models for Scaling Depression

项目反应理论 心理测量学 构造(python库) 逻辑回归 匹配(统计) 心理学 缩放比例 认知 多维标度 计量经济学 认知心理学 度量(数据仓库) 统计
作者
Steven P. Reise,Huiqin Du,Emily Wong,Anne S. Hubbard,Mark G. Haviland
出处
期刊:Psychometrika [Springer Nature]
卷期号:86 (3): 800-824 被引量:9
标识
DOI:10.1007/s11336-021-09802-0
摘要

Item response theory (IRT) model applications extend well beyond cognitive ability testing, and various patient-reported outcomes (PRO) measures are among the more prominent examples. PRO (and like) constructs differ from cognitive ability constructs in many ways, and these differences have model fitting implications. With a few notable exceptions, however, most IRT applications to PRO constructs rely on traditional IRT models, such as the graded response model. We review some notable differences between cognitive and PRO constructs and how these differences can present challenges for traditional IRT model applications. We then apply two models (the traditional graded response model and an alternative log-logistic model) to depression measure data drawn from the Patient-Reported Outcomes Measurement Information System project. We do not claim that one model is "a better fit" or more "valid" than the other; rather, we show that the log-logistic model may be more consistent with the construct of depression as a unipolar phenomenon. Clearly, the graded response and log-logistic models can lead to different conclusions about the psychometrics of an instrument and the scaling of individual differences. We underscore, too, that, in general, explorations of which model may be more appropriate cannot be decided only by fit index comparisons; these decisions may require the integration of psychometrics with theory and research findings on the construct of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
端庄一刀完成签到 ,获得积分10
5秒前
哈基米德应助yshj采纳,获得30
6秒前
汉堡包应助liujianxin采纳,获得10
7秒前
帅气的沧海完成签到 ,获得积分10
8秒前
cloud完成签到,获得积分10
8秒前
飞飞完成签到,获得积分10
9秒前
LINGYUAN1991应助科研通管家采纳,获得10
10秒前
科目三应助科研通管家采纳,获得10
10秒前
佰斯特威应助科研通管家采纳,获得10
10秒前
修仙中应助科研通管家采纳,获得10
10秒前
修仙中应助科研通管家采纳,获得10
10秒前
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
风中冰香应助科研通管家采纳,获得10
10秒前
natmed应助科研通管家采纳,获得10
10秒前
10秒前
GongSyi完成签到 ,获得积分10
11秒前
孤独梦柏完成签到,获得积分10
18秒前
charm完成签到,获得积分10
18秒前
奥斯卡完成签到,获得积分0
20秒前
激昂的如柏完成签到,获得积分10
22秒前
健壮惋清完成签到 ,获得积分10
22秒前
MRJJJJ完成签到,获得积分10
22秒前
坚定尔蓝完成签到,获得积分10
25秒前
扣子完成签到 ,获得积分10
26秒前
Echo1128完成签到 ,获得积分10
28秒前
花生糕完成签到,获得积分10
30秒前
32秒前
34秒前
nature完成签到,获得积分10
34秒前
liujianxin发布了新的文献求助10
36秒前
JOKY完成签到 ,获得积分10
38秒前
Arisqotle完成签到 ,获得积分10
40秒前
40秒前
稳重母鸡完成签到 ,获得积分10
41秒前
香蕉觅云应助liujianxin采纳,获得10
41秒前
44秒前
纯真怜梦发布了新的文献求助10
44秒前
申燕婷完成签到 ,获得积分10
45秒前
long完成签到 ,获得积分10
46秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5378458
求助须知:如何正确求助?哪些是违规求助? 4502884
关于积分的说明 14014658
捐赠科研通 4411499
什么是DOI,文献DOI怎么找? 2423316
邀请新用户注册赠送积分活动 1416206
关于科研通互助平台的介绍 1393644