Stimuli-Aware Visual Emotion Analysis

计算机科学 人工智能 可解释性 熵(时间箭头) 特征提取 认知 模棱两可 模式识别(心理学) 视觉感受 可视化 情绪分类 感知 机器学习 心理学 神经科学 物理 程序设计语言 量子力学
作者
Jingyuan Yang,Jie Li,Wang Xiu,Yuxuan Ding,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 7432-7445 被引量:8
标识
DOI:10.1109/tip.2021.3106813
摘要

Visual emotion analysis (VEA) has attracted great attention recently, due to the increasing tendency of expressing and understanding emotions through images on social networks. Different from traditional vision tasks, VEA is inherently more challenging since it involves a much higher level of complexity and ambiguity in human cognitive process. Most of the existing methods adopt deep learning techniques to extract general features from the whole image, disregarding the specific features evoked by various emotional stimuli. Inspired by the Stimuli-Organism-Response (S-O-R) emotion model in psychological theory, we proposed a stimuli-aware VEA method consisting of three stages, namely stimuli selection (S), feature extraction (O) and emotion prediction (R). First, specific emotional stimuli (i. e., color, object, face) are selected from images by employing the off-the-shelf tools. To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network. Then, we design three specific networks, i. e., Global-Net, Semantic-Net and Expression-Net, to extract distinct emotional features from different stimuli simultaneously. Finally, benefiting from the inherent structure of Mikel's wheel, we design a novel hierarchical cross-entropy loss to distinguish hard false examples from easy ones in an emotion-specific manner. Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets. Ablation study and visualizations further prove the validity and interpretability of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿宅完成签到,获得积分10
刚刚
1秒前
池鱼完成签到,获得积分10
1秒前
zhaoaotao发布了新的文献求助10
1秒前
2秒前
dzyg6完成签到,获得积分10
2秒前
包容寻菡发布了新的文献求助10
2秒前
可爱的函函应助君姊采纳,获得10
4秒前
青年才俊发布了新的文献求助10
5秒前
超帅水杯完成签到,获得积分10
5秒前
丘比特应助小灰灰采纳,获得10
6秒前
风中小鸽子完成签到,获得积分10
6秒前
7秒前
8秒前
JamesPei应助虚幻孤丹采纳,获得10
8秒前
8秒前
CodeCraft应助pluvia采纳,获得10
8秒前
9秒前
优美的铸海完成签到,获得积分10
9秒前
CLX。完成签到,获得积分10
10秒前
包容寻菡完成签到,获得积分10
10秒前
10秒前
Forever完成签到,获得积分10
11秒前
11秒前
12秒前
qss8807发布了新的文献求助10
12秒前
vivre223发布了新的文献求助10
13秒前
东桑末榆完成签到,获得积分10
13秒前
小左完成签到 ,获得积分10
14秒前
顾矜应助靳韩羽采纳,获得10
14秒前
15秒前
16秒前
16秒前
小二郎应助qss8807采纳,获得10
16秒前
zhaoaotao完成签到,获得积分10
17秒前
李八百完成签到,获得积分10
18秒前
搞怪白秋发布了新的文献求助10
18秒前
楸霁完成签到,获得积分10
18秒前
ding应助luster采纳,获得10
18秒前
简简单单完成签到,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646612
求助须知:如何正确求助?哪些是违规求助? 4771918
关于积分的说明 15035835
捐赠科研通 4805361
什么是DOI,文献DOI怎么找? 2569639
邀请新用户注册赠送积分活动 1526601
关于科研通互助平台的介绍 1485860