Stimuli-Aware Visual Emotion Analysis

计算机科学 人工智能 可解释性 熵(时间箭头) 特征提取 认知 模棱两可 模式识别(心理学) 视觉感受 可视化 情绪分类 感知 机器学习 心理学 物理 神经科学 量子力学 程序设计语言
作者
Jingyuan Yang,Jie Li,Wang Xiu,Yuxuan Ding,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 7432-7445 被引量:8
标识
DOI:10.1109/tip.2021.3106813
摘要

Visual emotion analysis (VEA) has attracted great attention recently, due to the increasing tendency of expressing and understanding emotions through images on social networks. Different from traditional vision tasks, VEA is inherently more challenging since it involves a much higher level of complexity and ambiguity in human cognitive process. Most of the existing methods adopt deep learning techniques to extract general features from the whole image, disregarding the specific features evoked by various emotional stimuli. Inspired by the Stimuli-Organism-Response (S-O-R) emotion model in psychological theory, we proposed a stimuli-aware VEA method consisting of three stages, namely stimuli selection (S), feature extraction (O) and emotion prediction (R). First, specific emotional stimuli (i. e., color, object, face) are selected from images by employing the off-the-shelf tools. To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network. Then, we design three specific networks, i. e., Global-Net, Semantic-Net and Expression-Net, to extract distinct emotional features from different stimuli simultaneously. Finally, benefiting from the inherent structure of Mikel's wheel, we design a novel hierarchical cross-entropy loss to distinguish hard false examples from easy ones in an emotion-specific manner. Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets. Ablation study and visualizations further prove the validity and interpretability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
abcd_1067完成签到,获得积分10
1秒前
酷波er应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
小包应助科研通管家采纳,获得10
1秒前
彩色的大碗完成签到,获得积分10
2秒前
无心的柚子应助科研通管家采纳,获得100
2秒前
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得20
2秒前
共享精神应助科研通管家采纳,获得10
2秒前
2秒前
CipherSage应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
小包应助科研通管家采纳,获得10
2秒前
amberzyc应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得20
2秒前
2秒前
2秒前
哆啦十七应助ahaha采纳,获得10
3秒前
哆啦十七应助ahaha采纳,获得10
3秒前
辉辉完成签到,获得积分10
3秒前
3秒前
肥肉草发布了新的文献求助10
3秒前
点金石完成签到,获得积分10
3秒前
3秒前
3秒前
开朗大地完成签到,获得积分10
4秒前
Wjh123456完成签到,获得积分10
4秒前
Mark完成签到,获得积分10
4秒前
Adam完成签到,获得积分10
7秒前
Maisie发布了新的文献求助10
7秒前
牛马完成签到,获得积分10
8秒前
武元彤发布了新的文献求助10
8秒前
853225598完成签到,获得积分10
8秒前
9秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337004
求助须知:如何正确求助?哪些是违规求助? 4474294
关于积分的说明 13923554
捐赠科研通 4369116
什么是DOI,文献DOI怎么找? 2400580
邀请新用户注册赠送积分活动 1393641
关于科研通互助平台的介绍 1365542