Stimuli-Aware Visual Emotion Analysis

计算机科学 人工智能 可解释性 熵(时间箭头) 特征提取 认知 模棱两可 模式识别(心理学) 视觉感受 可视化 情绪分类 感知 机器学习 心理学 物理 神经科学 量子力学 程序设计语言
作者
Jingyuan Yang,Jie Li,Wang Xiu,Yuxuan Ding,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 7432-7445 被引量:8
标识
DOI:10.1109/tip.2021.3106813
摘要

Visual emotion analysis (VEA) has attracted great attention recently, due to the increasing tendency of expressing and understanding emotions through images on social networks. Different from traditional vision tasks, VEA is inherently more challenging since it involves a much higher level of complexity and ambiguity in human cognitive process. Most of the existing methods adopt deep learning techniques to extract general features from the whole image, disregarding the specific features evoked by various emotional stimuli. Inspired by the Stimuli-Organism-Response (S-O-R) emotion model in psychological theory, we proposed a stimuli-aware VEA method consisting of three stages, namely stimuli selection (S), feature extraction (O) and emotion prediction (R). First, specific emotional stimuli (i. e., color, object, face) are selected from images by employing the off-the-shelf tools. To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network. Then, we design three specific networks, i. e., Global-Net, Semantic-Net and Expression-Net, to extract distinct emotional features from different stimuli simultaneously. Finally, benefiting from the inherent structure of Mikel's wheel, we design a novel hierarchical cross-entropy loss to distinguish hard false examples from easy ones in an emotion-specific manner. Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets. Ablation study and visualizations further prove the validity and interpretability of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊的铭应助飞天817采纳,获得10
2秒前
法号胡来完成签到,获得积分10
2秒前
yinzy完成签到,获得积分10
3秒前
平淡惋清完成签到,获得积分10
3秒前
浅尝离白应助sunming采纳,获得30
5秒前
脑洞疼应助法号胡来采纳,获得10
6秒前
庄周梦鱼完成签到,获得积分10
6秒前
明理冰淇淋完成签到,获得积分10
7秒前
诚心仙人掌完成签到,获得积分10
8秒前
完美世界应助proteinpurify采纳,获得30
9秒前
10秒前
wanci应助万松采纳,获得10
12秒前
赘婿应助Yiqi采纳,获得10
13秒前
鸳鸯士完成签到,获得积分10
13秒前
bkagyin应助xxxxxb采纳,获得10
13秒前
sunming完成签到,获得积分10
14秒前
17秒前
乐天完成签到,获得积分10
17秒前
19秒前
十言完成签到,获得积分10
22秒前
carbonhan应助法号胡来采纳,获得10
23秒前
斯文败类应助馒头采纳,获得10
24秒前
red完成签到,获得积分10
25秒前
25秒前
Gardener完成签到 ,获得积分10
25秒前
proteinpurify发布了新的文献求助30
25秒前
大卫在分享应助mtj采纳,获得10
29秒前
爱吃土豆的小狸猫完成签到,获得积分10
32秒前
思源应助red采纳,获得10
32秒前
VDC应助123采纳,获得10
32秒前
紫琉花雨完成签到 ,获得积分10
32秒前
34秒前
甜美的月饼完成签到,获得积分10
34秒前
kelsey1015完成签到,获得积分10
35秒前
36秒前
锦鲤完成签到 ,获得积分10
36秒前
EdwardKING完成签到,获得积分10
37秒前
彩色的恋风完成签到,获得积分10
38秒前
39秒前
善学以致用应助PCEEN采纳,获得10
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155767
求助须知:如何正确求助?哪些是违规求助? 2807008
关于积分的说明 7871598
捐赠科研通 2465380
什么是DOI,文献DOI怎么找? 1312221
科研通“疑难数据库(出版商)”最低求助积分说明 629947
版权声明 601905