Stimuli-Aware Visual Emotion Analysis

计算机科学 人工智能 可解释性 熵(时间箭头) 特征提取 认知 模棱两可 模式识别(心理学) 视觉感受 可视化 情绪分类 感知 机器学习 心理学 神经科学 物理 程序设计语言 量子力学
作者
Jingyuan Yang,Jie Li,Wang Xiu,Yuxuan Ding,Xinbo Gao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 7432-7445 被引量:8
标识
DOI:10.1109/tip.2021.3106813
摘要

Visual emotion analysis (VEA) has attracted great attention recently, due to the increasing tendency of expressing and understanding emotions through images on social networks. Different from traditional vision tasks, VEA is inherently more challenging since it involves a much higher level of complexity and ambiguity in human cognitive process. Most of the existing methods adopt deep learning techniques to extract general features from the whole image, disregarding the specific features evoked by various emotional stimuli. Inspired by the Stimuli-Organism-Response (S-O-R) emotion model in psychological theory, we proposed a stimuli-aware VEA method consisting of three stages, namely stimuli selection (S), feature extraction (O) and emotion prediction (R). First, specific emotional stimuli (i. e., color, object, face) are selected from images by employing the off-the-shelf tools. To the best of our knowledge, it is the first time to introduce stimuli selection process into VEA in an end-to-end network. Then, we design three specific networks, i. e., Global-Net, Semantic-Net and Expression-Net, to extract distinct emotional features from different stimuli simultaneously. Finally, benefiting from the inherent structure of Mikel's wheel, we design a novel hierarchical cross-entropy loss to distinguish hard false examples from easy ones in an emotion-specific manner. Experiments demonstrate that the proposed method consistently outperforms the state-of-the-art approaches on four public visual emotion datasets. Ablation study and visualizations further prove the validity and interpretability of our method.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
test发布了新的文献求助30
1秒前
我是老大应助56357w7采纳,获得10
1秒前
momo发布了新的文献求助10
1秒前
情怀应助典雅海蓝采纳,获得10
1秒前
小蘑菇应助Jnut采纳,获得10
1秒前
星苒发布了新的文献求助10
1秒前
大模型应助大导师采纳,获得10
1秒前
1234556完成签到,获得积分10
2秒前
清浅发布了新的文献求助10
2秒前
星期天发布了新的文献求助10
2秒前
sys549发布了新的文献求助10
2秒前
陈明健发布了新的文献求助10
3秒前
xqgao完成签到,获得积分10
3秒前
YANG发布了新的文献求助10
3秒前
不辍完成签到,获得积分10
4秒前
轻松刚发布了新的文献求助10
4秒前
4秒前
踏雾发布了新的文献求助10
4秒前
PHW完成签到,获得积分10
4秒前
mj完成签到,获得积分20
4秒前
4秒前
科研大佬发布了新的文献求助10
5秒前
安利完成签到,获得积分10
5秒前
cxh完成签到,获得积分10
5秒前
小二郎应助番茄酱采纳,获得10
6秒前
6秒前
7秒前
7秒前
许进文完成签到,获得积分10
7秒前
8秒前
六六完成签到,获得积分20
8秒前
mzmz发布了新的文献求助10
8秒前
8秒前
mj发布了新的文献求助10
8秒前
霍格沃兹魔药课助理完成签到,获得积分10
9秒前
CodeCraft应助研友_LN7x6n采纳,获得10
9秒前
大模型应助星期天采纳,获得10
9秒前
9秒前
彭于晏应助flora采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667386
求助须知:如何正确求助?哪些是违规求助? 4885345
关于积分的说明 15119791
捐赠科研通 4826177
什么是DOI,文献DOI怎么找? 2583805
邀请新用户注册赠送积分活动 1537947
关于科研通互助平台的介绍 1496059