Feature extraction for machine learning-based intrusion detection in IoT networks

计算机科学 人工智能 线性判别分析 水准点(测量) 机器学习 特征提取 模式识别(心理学) 主成分分析 卷积神经网络 入侵检测系统 特征(语言学) 数据挖掘 决策树 人工神经网络 朴素贝叶斯分类器 支持向量机 哲学 语言学 大地测量学 地理
作者
Mohanad Sarhan,Siamak Layeghy,Nour Moustafa,Marcus Gallagher,Marius Portmann
出处
期刊:Digital Communications and Networks [KeAi]
被引量:15
标识
DOI:10.1016/j.dcan.2022.08.012
摘要

A large number of network security breaches in IoT networks have demonstrated the unreliability of current Network Intrusion Detection Systems (NIDSs). Consequently, network interruptions and loss of sensitive data have occurred, which led to an active research area for improving NIDS technologies. In an analysis of related works, it was observed that most researchers aim to obtain better classification results by using a set of untried combinations of Feature Reduction (FR) and Machine Learning (ML) techniques on NIDS datasets. However, these datasets are different in feature sets, attack types, and network design. Therefore, this paper aims to discover whether these techniques can be generalised across various datasets. Six ML models are utilised: a Deep Feed Forward (DFF), Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Decision Tree (DT), Logistic Regression (LR), and Naive Bayes (NB). The accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA), are evaluated using three benchmark datasets: UNSW-NB15, ToN-IoT and CSE-CIC-IDS2018. Although PCA and AE algorithms have been widely used, the determination of their optimal number of extracted dimensions has been overlooked. The results indicate that no clear FE method or ML model can achieve the best scores for all datasets. The optimal number of extracted dimensions has been identified for each dataset, and LDA degrades the performance of the ML models on two datasets. The variance is used to analyse the extracted dimensions of LDA and PCA. Finally, this paper concludes that the choice of datasets significantly alters the performance of the applied techniques. We believe that a universal (benchmark) feature set is needed to facilitate further advancement and progress of research in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
老迟到的金鱼应助罗永昊采纳,获得10
1秒前
kecheng应助nine2652采纳,获得10
1秒前
yyyfff应助欣喜靖采纳,获得10
2秒前
SYLH应助欣喜靖采纳,获得20
2秒前
xiaolan发布了新的文献求助10
2秒前
3秒前
KKKB发布了新的文献求助10
3秒前
化学真难学完成签到,获得积分10
4秒前
4秒前
量子星尘发布了新的文献求助30
4秒前
李健的粉丝团团长应助Sean采纳,获得10
4秒前
5秒前
何想发布了新的文献求助10
5秒前
包包酱完成签到,获得积分10
5秒前
鸡脖侠完成签到,获得积分10
5秒前
elever11发布了新的文献求助20
6秒前
7秒前
欧阳惜筠发布了新的文献求助10
7秒前
7秒前
7秒前
123关闭了123文献求助
8秒前
Owen应助书篆采纳,获得10
8秒前
浅度求索发布了新的文献求助10
8秒前
charles发布了新的文献求助10
9秒前
奈落发布了新的文献求助10
9秒前
拾光完成签到,获得积分10
9秒前
英姑应助123采纳,获得10
9秒前
领导范儿应助怡然花卷采纳,获得30
10秒前
10秒前
爱撒娇的靖荷完成签到,获得积分20
10秒前
Lee完成签到,获得积分10
11秒前
朴素树叶完成签到 ,获得积分10
11秒前
ChenhaoTong发布了新的文献求助10
11秒前
11秒前
iptwang完成签到,获得积分10
12秒前
搜集达人应助wwl采纳,获得10
13秒前
Ava应助朽木采纳,获得10
13秒前
13秒前
aaa完成签到,获得积分10
13秒前
yydhda完成签到,获得积分10
14秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3978493
求助须知:如何正确求助?哪些是违规求助? 3522581
关于积分的说明 11213889
捐赠科研通 3260014
什么是DOI,文献DOI怎么找? 1799712
邀请新用户注册赠送积分活动 878604
科研通“疑难数据库(出版商)”最低求助积分说明 807002