医学
跟骨
楔形(几何)
截骨术
口腔正畸科
有限元法
畸形
生物力学
韧带
解剖
外科
几何学
结构工程
数学
工程类
作者
Jiajun Wu,Hua Liu,Can Xu
标识
DOI:10.1177/10711007211043822
摘要
The Evans calcaneal lengthening osteotomy procedure is widely used for correcting progressive collapsing foot deformity. However, it can result in overcorrection and degenerations of the calcaneocuboid joint. Different shapes of graft have been used in the Evans calcaneal osteotomy, but potential differences in their biomechanical effects is still unclear. The present study was designed to explore the biomechanical effects of graft shape and improve the Evans procedure to avoid or minimize detrimental effects.Twelve patient-specific finite element models were established and validated. A triangular or rectangular wedge of varying size was inserted at the lateral edge of calcaneus, and the degree of correction was quantified. The stress in spring ligaments and plantar fascia and the contact characteristics of the talonavicular and calcaneocuboid joints were calculated and compared accordingly.The rectangular graft provided a much higher degree of correction than triangular grafts did. However, the contact characteristics of the calcaneocuboid joint and talonavicular joint were abnormal, with clear sensitivity to increased graft size, and the modeled strain of the spring ligament increased.The finite element analysis predicts that the rectangular grafts provide a higher degree of correction, but risks overcorrection compared with triangular grafts. The triangular graft may have a lower degree of disturbance to the biomechanical behaviors of the midtarsal joint.The model shows that both the shape and size of an Evans osteotomy bone wedge can have effects on the contiguous joints and ligamentous structures. Those effects should be considered when selecting a bone wedge for an Evans calcaneal osteotomy.Level III, case-control study.
科研通智能强力驱动
Strongly Powered by AbleSci AI