舍瓦内拉
胞外聚合物
光化学
羟基自由基
微生物降解
激进的
环境化学
化学
溶解有机碳
光解
生物膜
细菌
有机化学
生物
微生物
遗传学
作者
Shaofeng Zhou,Jing Wang,Beiping Zhang,Rui Hou,Yi Wang,Shungui Zhou,Yifeng Zhang,Zhiyong Jason Ren,Yong Yuan
标识
DOI:10.1021/acs.est.1c02286
摘要
Microbially derived extracellular polymeric substances (EPSs) occupy a large portion of dissolved organic matter (DOM) in surface waters, but the understanding of the photochemical behaviors of EPS is still very limited. In this study, the photochemical characteristics of EPS from different microbial sources (Shewanella oneidensis, Escherichia coli, and sewage sludge flocs) were investigated in terms of the production of reactive species (RS), such as triplet intermediates (3EPS*), hydroxyl radicals (•OH), and singlet oxygen (1O2). The steady-state concentrations of •OH, 3EPS*, and 1O2 varied in the ranges of 2.55–8.73 × 10–17, 3.01–4.56 × 10–15, and 2.08–2.66 × 10–13 M, respectively, which were within the range reported for DOM from other sources. The steady-state concentrations of RS varied among different EPS isolates due to the diversity of their composition. A strong photochemical degradation of the protein-like components in EPS isolates was identified by excitation emission matrix fluorescence with parallel factor analysis, but relatively, humic-like components remained stable. Fourier-transform ion cyclotron resonance mass spectrometry further revealed that the aliphatic portion of EPS was resistant to irradiation, while other portions with lower H/C ratios and higher O/C ratios were more susceptible to photolysis, leading to the phototransformation of EPS to higher saturation and lower aromaticity. With the phototransformation of EPS, the RS derived from EPS could effectively promote the degradation of antibiotic tetracycline. The findings of this study provide new insights into the photoinduced self-evolution of EPS and the interrelated photochemical fate of contaminants in the aquatic environment.
科研通智能强力驱动
Strongly Powered by AbleSci AI