Antifungal mechanism of 1-nonanol against Aspergillus flavus growth revealed by metabolomic analyses

黄曲霉 食物腐败 采后 生物 生物化学 食品科学 化学 微生物学 细菌 植物 遗传学
作者
Shuaibing Zhang,Yu-Liang Qin,Shengfa Li,Yang‐Yong Lv,Huan-Chen Zhai,Yuansen Hu,Jing-Ping Cai
出处
期刊:Applied Microbiology and Biotechnology [Springer Nature]
卷期号:105 (20): 7871-7888 被引量:46
标识
DOI:10.1007/s00253-021-11581-8
摘要

Chemical control of fungal spoilage of postharvest cereal grains is an important strategy for the management of grain storage. Here, the potential antifungal activity of 1-nonanol, a main component of cereal volatiles, against Aspergillus flavus was studied. The growth of A. flavus was completely inhibited by 0.11 and 0.20 μL/mL 1-nonanol at vapor and liquid contact phases, respectively. Metabolomic analysis identified 135 metabolites whose expression was significantly different between 1-nonanol-treated and untreated A. flavus. These metabolites were involved in the tricarboxylic acid cycle, amino acid biosynthesis, protein degradation and absorption, aminoacyl-tRNA biosynthesis, mineral absorption, and in interactions with ABC transporters. Biochemical validation confirmed the disruptive effect of 1-nonanol on A. flavus growth, as indicated by the leakage of intracellular electrolytes, decreased succinate dehydrogenase, mitochondrial dehydrogenase, and ATPase activity, and the accumulation of reactive oxygen species. We speculated that 1-nonanol could disrupt cell membrane integrity and mitochondrial function and might induce apoptosis of A. flavus mycelia. Simulated grain storage experiments showed that 1-nonanol vapor, at a concentration of 264 μL/L, completely inhibited A. flavus growth in wheat, corn, and paddy grain with an 18% moisture content. This study provides new insights into the antifungal mechanism of 1-nonanol against A. flavus, indicating that it has a promising potential as a bio-preservative to prevent fungal spoilage of postharvest grains. • 1-Nonanol showed higher antifungal activity against A. flavus. • The antifungal mechanisms of 1-nonanol against A. flavus were revealed. • 1-Nonanol could damage cell membrane integrity and mitochondrial function.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
锅锅完成签到,获得积分10
刚刚
科研通AI5应助pineapple采纳,获得10
刚刚
英姑应助研友_ngX12Z采纳,获得10
刚刚
打打应助野马采纳,获得20
刚刚
1秒前
1秒前
Nyxia发布了新的文献求助10
1秒前
2秒前
刻苦的兔子完成签到,获得积分10
2秒前
Knight发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
may完成签到,获得积分10
4秒前
4秒前
5秒前
饱满懿轩发布了新的文献求助10
5秒前
兴奋采梦完成签到,获得积分10
5秒前
1234hai完成签到 ,获得积分10
5秒前
clh0_0clh发布了新的文献求助10
6秒前
6秒前
顺利蜗牛完成签到,获得积分10
6秒前
sjh发布了新的文献求助10
6秒前
6秒前
白秋雪发布了新的文献求助10
6秒前
7秒前
安静凡旋发布了新的文献求助10
7秒前
完美世界应助虚幻赛凤采纳,获得10
7秒前
ming发布了新的文献求助10
7秒前
科研通AI2S应助liuliqiong采纳,获得10
7秒前
稳重书双发布了新的文献求助10
8秒前
英俊牛排发布了新的文献求助10
8秒前
华仔应助yuan采纳,获得10
8秒前
Simplefy完成签到,获得积分20
9秒前
9秒前
9秒前
陆拾荒完成签到,获得积分10
9秒前
聪明摩托发布了新的文献求助10
10秒前
科研通AI5应助粘粘纸采纳,获得10
10秒前
啾啾咪咪发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 710
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3564116
求助须知:如何正确求助?哪些是违规求助? 3137325
关于积分的说明 9421827
捐赠科研通 2837701
什么是DOI,文献DOI怎么找? 1559976
邀请新用户注册赠送积分活动 729224
科研通“疑难数据库(出版商)”最低求助积分说明 717246