High-Q lithium niobate micro- /Nano-resonators

铌酸锂 谐振器 光子晶体 光子学 光折变效应 光电子学 材料科学 纳米- 纳米技术 光学 物理 复合材料
作者
Hanxiao Liang
链接
摘要

Lithium niobate (LN) exhibits unique material characteristics that have been used in many important applications. Scaling LN devices down to a nanoscopic scale can dramatically enhance light-matter interactions and would enable nonlinear and quantum photonic functionalities beyond the reach of conventional means. However, developing LN-based nano-photonic devices turns out to be nontrivial. Although significant efforts have been devoted in recent years, LN photonic crystal structures developed to date exhibit fairly low quality. This thesis focuses on the application and fabrication of high-quality microresonators (micro-ring) and nano-resonators (photonic crystal). High-quality LN photonic crystal resonators for both 1-D and 2-D geometries are demonstrated. For both case, the intrinsic optical quality factors are larger than 10^5, which is two orders of magnitude higher than other LN nano-cavities reported to date. The high optical quality together with tight mode confinement leads to an extremely strong nonlinear photorefractive effect, with a resonance tuning rate of ~0.64 GHz/aJ, or equivalently ~84 MHz/photon, three orders of magnitude greater than other LN resonators. In particular, intriguing quenching of photorefraction is observed, which has never been reported before. This phenomenon shows a new potential solution to the photorefractive damage problem. The demonstration of high optical quality LN photonic crystal nano-resonators paves a crucial step towards LN nano-photonics that could integrate the outstanding material properties with versatile nano-scale device engineering for diverse intriguing functionalities. On the other hand, this thesis also focuses on the engineering and application of LN micro-rings through theoretical and experimental investigations. High-quality LN micro-rings are demonstrated, with intrinsic optical Qs up to 7 million. Such a high-quality micro-ring succeeds in producing an optical Kerr frequency comb. The demonstrated broadband Kerr frequency comb in dispersionengineered LN micro-ring resonators has a loaded optical Q of 2.5 million. The comb exhibits a spectrum extending from 1450 nm to 1680 nm in the telecom band, with an on-chip pump power of only 33 mW. We also observed an upconverted second harmonic associated with the Kerr frequency comb on this platform. These demonstrations pave a crucial step towards the development of comb applications in this promising device platform.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yorshka完成签到,获得积分10
1秒前
1秒前
呵呵发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
田様应助dddnnn采纳,获得10
3秒前
8o7XJ7发布了新的文献求助30
4秒前
long应助杨丽采纳,获得10
4秒前
lilili应助杨丽采纳,获得10
4秒前
无花果应助霍健霏采纳,获得10
5秒前
zoe666发布了新的文献求助30
5秒前
LamChem发布了新的文献求助10
5秒前
5秒前
fyc完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
8秒前
Yuenyee应助123采纳,获得10
8秒前
9秒前
勤恳靖巧发布了新的文献求助10
10秒前
JamesPei应助lcc采纳,获得10
11秒前
幸运星完成签到,获得积分10
12秒前
清风完成签到 ,获得积分10
12秒前
12秒前
丘比特应助大白采纳,获得10
12秒前
晨曦曦完成签到 ,获得积分10
13秒前
14秒前
贝贝发布了新的文献求助10
14秒前
15秒前
16秒前
Orange应助科研通管家采纳,获得10
16秒前
上官若男应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
JamesPei应助科研通管家采纳,获得10
16秒前
脑洞疼应助科研通管家采纳,获得10
16秒前
16秒前
田様应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
cosmos应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
AASHTO LRFD Bridge Design Specifications (10th Edition) with 2025 Errata 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5125011
求助须知:如何正确求助?哪些是违规求助? 4329012
关于积分的说明 13489539
捐赠科研通 4163648
什么是DOI,文献DOI怎么找? 2282463
邀请新用户注册赠送积分活动 1283623
关于科研通互助平台的介绍 1222905