Molecular simulation of the (GPx)-like antioxidant activity of ebselen derivatives through machine learning techniques

伊布塞伦 自举(财务) 化学 数量结构-活动关系 分子描述符 谷胱甘肽过氧化物酶 相关系数 机器学习 人工智能 数学 计算机科学 谷胱甘肽 立体化学 生物化学 有机化学 计量经济学
作者
Luis Calle,Yovani Marrero‐Ponce,José R. Mora
出处
期刊:Molecular Simulation [Taylor & Francis]
卷期号:47 (17): 1402-1410 被引量:1
标识
DOI:10.1080/08927022.2021.1975039
摘要

The selenoenzyme glutathione peroxidase (GPx) like activity of stable organoselenium compounds has been evaluated through the initial rate (ν0) of the reduction reaction of H2O2, Cum-OOH, and t-BuOOH. A Quantitative Structure–Activity Relationships (QSAR) analysis based on different machine learning techniques was performed by employing atom-weighed algebraic maps indexes as descriptors. The predictive capability of the obtained models was statistically validated by mean of the correlation coefficient for adjusting (R2), leave one out cross validation (Q2LOO), and bootstrapping (Q2boot). For the case of H2O2 reduction, a model was obtained with six attributes (M2) and values of R2 = 0.907, Q2LOO = 0.867, and Q2boot = 0.852. For the cum-OOH reduction, a model was obtained with five attributes (M15) with the statistical parameters: R2 = 0.925, Q2LOO = 0.894, and Q2boot = 0.873. For the t-BuOOH reduction, a model with four descriptors (M19) was found with the values of R2 = 0.938, Q2LOO = 0.897, Q2boot = 0.856. The statistical parameters obtained for these three models suggest that they are robust enough with good predictive capability. Finally, screening analysis of some related compounds containing selenium was performed and two possible lead compounds were found (16 and 53), which can be used for the searching of candidates with GPx-like activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
啊哈哈哈哈哈完成签到 ,获得积分10
2秒前
2秒前
JamesPei应助花花采纳,获得10
2秒前
充电宝应助光亮的绮晴采纳,获得10
3秒前
sooyaaa完成签到,获得积分10
4秒前
杨仲文发布了新的文献求助10
4秒前
Silone发布了新的文献求助10
4秒前
深情安青应助老实的玉米采纳,获得10
4秒前
凡凡的凡凡应助Kate采纳,获得10
4秒前
5秒前
5秒前
5秒前
hdy331完成签到,获得积分0
6秒前
丘比特应助xiuxiu采纳,获得10
6秒前
思源应助开朗问晴采纳,获得10
7秒前
浮游应助何以载道采纳,获得10
7秒前
安谢发布了新的文献求助10
7秒前
浮生梦应助秀丽的正豪采纳,获得10
7秒前
7秒前
8秒前
子星发布了新的文献求助10
8秒前
lee完成签到,获得积分10
9秒前
10秒前
10秒前
在水一方应助啊哦采纳,获得10
11秒前
炼丹师应助Ray采纳,获得20
11秒前
NexusExplorer应助狗宅采纳,获得10
11秒前
11秒前
12秒前
不相变蜜完成签到,获得积分10
12秒前
小管完成签到,获得积分10
13秒前
善学以致用应助LIJIngcan采纳,获得10
13秒前
14秒前
111发布了新的文献求助10
14秒前
万能图书馆应助兴奋蘑菇采纳,获得10
15秒前
怀南完成签到,获得积分10
15秒前
落寞的易绿完成签到,获得积分10
15秒前
干净士晋发布了新的文献求助10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132616
求助须知:如何正确求助?哪些是违规求助? 4333988
关于积分的说明 13502721
捐赠科研通 4171020
什么是DOI,文献DOI怎么找? 2286820
邀请新用户注册赠送积分活动 1287691
关于科研通互助平台的介绍 1228590