Evolution of polarization crystallites in 0.92BaTiO3-0.08Bi(Ni0.5Zr0.5)O3 microcrystal-amorphous composite thin film with high energy storage capability and thermal stability

材料科学 无定形固体 微晶 复合数 薄膜 复合材料 退火(玻璃) 热稳定性 电介质 电容器 储能 微晶 极化(电化学) 光电子学 纳米技术 化学工程 电气工程 电压 冶金 化学 物理化学 工程类 古生物学 功率(物理) 物理 有机化学 量子力学 生物
作者
Rui Huang,Hongye Wang,Cheng Tao,Hua Hao,Zhonghua Yao,Hanxing Liu,Minghe Cao
出处
期刊:Chemical Engineering Journal [Elsevier BV]
卷期号:433: 133579-133579 被引量:15
标识
DOI:10.1016/j.cej.2021.133579
摘要

Thin film capacitors with large energy storage density and high breakdown strength are widely used in modern electronic fields. To solve the problems of interface effect and different polarization mechanism between matrix and fillers in conventional heterogeneous structure composite thin film capacitors, a new-type inorganic microcrystal-amorphous composite film of 0.92BaTiO3-0.08Bi(Ni0.5Zr0.5)O3(0.92BT-0.08BNZ) are prepared by sol–gel method. The amorphous matrix improving the breakdown strength is introduced into the film by adjusting preparation technology. Moreover, the nano-scale polar microcrystalline regions (fillers) are introduced and uniformly distributed in the amorphous matrix under various annealing temperatures. Through investigating the influence of different amorphous matrix and microcrystal trend on the dielectric and energy storage properties, it is found that synergistic effect between the polarized microcrystalline regions and the amorphous matrix are optimal at an annealed temperature of 550 ℃. The result shows that a high energy storage density of 103.7 J cm−3 and an efficiency of 88.3% are obtained under the electric field of 8.30MV cm−1. Simultaneously, the excellent dielectric and energy storage stability is achieved in a wide temperature range of 20–200 °C. Conclusively, this microcrystal-amorphous composite film overcome the low energy storage capability and poor thermal stability of conventional composite films and provide a feasible way for preparing high energy storage performance films.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点击发货完成签到,获得积分10
刚刚
刚刚
刚刚
kinase完成签到 ,获得积分10
1秒前
1秒前
张张完成签到,获得积分10
1秒前
123完成签到,获得积分10
2秒前
陌上花开完成签到,获得积分10
2秒前
guo发布了新的文献求助10
3秒前
无限秋天发布了新的文献求助10
4秒前
whichwhy发布了新的文献求助10
5秒前
小星星发布了新的文献求助10
7秒前
小马甲应助Nomb1采纳,获得10
8秒前
FashionBoy应助章慕思采纳,获得10
8秒前
BELIEVE完成签到 ,获得积分10
8秒前
ywayw完成签到,获得积分10
8秒前
英姑应助浅斟低唱采纳,获得10
9秒前
Hello应助guo采纳,获得10
10秒前
11秒前
12秒前
Akim应助白茶泡泡球采纳,获得10
14秒前
qcl发布了新的文献求助10
15秒前
15秒前
快去爬山完成签到 ,获得积分10
17秒前
吕小布完成签到,获得积分10
18秒前
18秒前
Sjingjia完成签到,获得积分10
18秒前
Melt发布了新的文献求助10
18秒前
魔女完成签到 ,获得积分10
19秒前
HongJiang完成签到,获得积分10
20秒前
科研通AI5应助Ki_Ayasato采纳,获得10
21秒前
科研通AI2S应助吕小布采纳,获得10
21秒前
penghuiye完成签到,获得积分10
22秒前
无限秋天发布了新的文献求助10
22秒前
芒果布丁完成签到 ,获得积分10
23秒前
23秒前
小星星完成签到,获得积分10
25秒前
26秒前
五十一完成签到 ,获得积分10
26秒前
温婉的松鼠完成签到 ,获得积分10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3671635
求助须知:如何正确求助?哪些是违规求助? 3228335
关于积分的说明 9779690
捐赠科研通 2938645
什么是DOI,文献DOI怎么找? 1610206
邀请新用户注册赠送积分活动 760547
科研通“疑难数据库(出版商)”最低求助积分说明 736093