奖章
社会经济地位
水准点(测量)
可能性
事前
随机森林
营销
分布(数学)
广告
计算机科学
业务
经济
人工智能
地理
社会学
机器学习
人口学
数学
逻辑回归
数学分析
人口
考古
大地测量学
宏观经济学
作者
Christoph Schlembach,Sascha L. Schmidt,Dominik Schreyer,Linus Wunderlich
标识
DOI:10.1016/j.techfore.2021.121314
摘要
Abstract Forecasting the number of Olympic medals for each nation is highly relevant for different stakeholders: Ex ante, sports betting companies can determine the odds while sponsors and media companies can allocate their resources to promising teams. Ex post, sports politicians and managers can benchmark the performance of their teams and evaluate the drivers of success. We apply machine learning, more specifically a two-staged Random Forest, to a dataset containing socioeconomic variables of 206 countries (1991–2020). For the first time, we outperform the more traditional naive forecast for four consecutive Olympics between 2008 and 2020.
科研通智能强力驱动
Strongly Powered by AbleSci AI