亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DICDNet: Deep Interpretable Convolutional Dictionary Network for Metal Artifact Reduction in CT Images.

作者
Hong Wang,Yuexiang Li,Nanjun He,Kai Ma,Deyu Meng,Yefeng Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2021.3127074
摘要

Computed tomography (CT) images are often impaired by unfavorable artifacts caused by metallic implants within patients, which would adversely affect the subsequent clinical diagnosis and treatment. Although the existing deep-learning-based approaches have achieved promising success on metal artifact reduction (MAR) for CT images, most of them treated the task as a general image restoration problem and utilized off-the-shelf network modules for image quality enhancement. Hence, such frameworks always suffer from lack of sufficient model interpretability for the specific task. Besides, the existing MAR techniques largely neglect the intrinsic prior knowledge underlying metal-corrupted CT images which is beneficial for the MAR performance improvement. In this paper, we specifically propose a deep interpretable convolutional dictionary network (DICDNet) for the MAR task. Particularly, we first explore that the metal artifacts always present non-local streaking and star-shape patterns in CT images. Based on such observations, a convolutional dictionary model is deployed to encode the metal artifacts. To solve the model, we propose a novel optimization algorithm based on the proximal gradient technique. With only simple operators, the iterative steps of the proposed algorithm can be easily unfolded into corresponding network modules with specific physical meanings. Comprehensive experiments on synthesized and clinical datasets substantiate the effectiveness of the proposed DICDNet as well as its superior interpretability, compared to current state-of-the-art MAR methods. Code is available at https://github.com/hongwang01/DICDNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
25秒前
49秒前
49秒前
49秒前
1分钟前
樊伟诚发布了新的文献求助10
1分钟前
科研通AI5应助闾丘惜萱采纳,获得30
2分钟前
陈无敌完成签到 ,获得积分10
2分钟前
2分钟前
闾丘惜萱完成签到,获得积分10
2分钟前
闾丘惜萱发布了新的文献求助30
2分钟前
2分钟前
锡伍闻钟发布了新的文献求助10
2分钟前
2分钟前
2分钟前
瘦瘦乌龟完成签到 ,获得积分10
2分钟前
万能图书馆应助Seeking采纳,获得10
4分钟前
4分钟前
4分钟前
GIA发布了新的文献求助10
5分钟前
fev123完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
6分钟前
6分钟前
Perry完成签到,获得积分10
7分钟前
哭泣灯泡完成签到,获得积分10
7分钟前
爆米花应助司徒易采纳,获得10
7分钟前
7分钟前
司徒易完成签到,获得积分10
7分钟前
司徒易发布了新的文献求助10
7分钟前
悦耳的亦旋完成签到,获得积分10
7分钟前
方宇应助懵懂的小懒虫采纳,获得10
8分钟前
方宇应助竹子采纳,获得30
8分钟前
8分钟前
8分钟前
8分钟前
卡恩完成签到 ,获得积分10
9分钟前
9分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Questioning in the Primary School 500
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
频率源分析与设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3686751
求助须知:如何正确求助?哪些是违规求助? 3237074
关于积分的说明 9829449
捐赠科研通 2949040
什么是DOI,文献DOI怎么找? 1617190
邀请新用户注册赠送积分活动 764126
科研通“疑难数据库(出版商)”最低求助积分说明 738322