Passivating contacts for high-efficiency silicon-based solar cells: From single-junction to tandem architecture

串联 材料科学 光伏系统 工程物理 能量转换效率 光电子学 共发射极 纳米技术 可再生能源 带隙 钝化 晶体硅 电气工程 工程类 复合材料 图层(电子)
作者
Jiakai Zhou,Qian Huang,Yi Ding,Guofu Hou,Ying Zhao
出处
期刊:Nano Energy [Elsevier BV]
卷期号:92: 106712-106712 被引量:64
标识
DOI:10.1016/j.nanoen.2021.106712
摘要

The electricity market from renewable energies is strongly driven by the pursuit of high energy conversion efficiency, which at present represents the most effective pathway to achieve substantial cost reductions. Silicon (Si) have been dominating the photovoltaic industry for decades, while the conversion efficiencies of Si single-junction solar cells are practically limited to around 27%, and intrinsically constrained to 29.4%. To tackle this long-term bottleneck, it is necessary to develop novel technologies and transfer them into industrial production. This paper commences with a review concentrating on two critical concepts enabling high-efficiency Si-based solar cells: passivating contacts and tandem technologies. Since the gradual evolution from full area Al back surface field cells to passivated emitter and rear contact cells, passivating contacts are considered as an essential concept to circumvent the recombination losses caused by the contacts. The theoretical background of the three prominent technologies for passivating contacts and their application prospects to solar cells are described in detail. The fundamental limit of single junction Si solar cells is attainable with the introduction of passivating contacts. To obtain conversion efficiencies greater than 30%, upgrading Si with a high-bandgap tandem partner is a promising approach to improve the utilization of the solar spectrum, having the potential to produce efficiency surpassing the single junction Shockley–Queisser limit. Si is proven to be an ideal bottom cells material in tandem architectures due to its appropriate bandgap for the lower sub-cell and the advantage of compatibility with existing production lines, the technologies for crystalline Si as bottom-cell are already quite mature with a gigawatt scale. The two widely considered ideal options for the top-cell, i.e., III/V and perovskites, are summarized, respectively. Building on these two concepts, a clear technology route is provided to maximize energy conversion efficiency by integration of passivating contacts into Si based tandem solar cells. According to this discussion, guidelines for further developments of Si photovoltaics emerge clearly, proving that Si will continue to maintain its irreplaceable position in photovoltaics in the long term.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈情发布了新的文献求助30
刚刚
量子星尘发布了新的文献求助10
1秒前
谢戴竹发布了新的文献求助30
1秒前
dxxcshin完成签到,获得积分10
1秒前
1秒前
1秒前
安详的冰蝶完成签到,获得积分10
2秒前
白晨完成签到,获得积分20
2秒前
2秒前
受伤灵薇完成签到,获得积分10
3秒前
阿怪完成签到,获得积分10
5秒前
5秒前
李健的小迷弟应助btmy16采纳,获得10
5秒前
Singularity应助ZHOUZHOU采纳,获得10
6秒前
6秒前
6秒前
吉吉完成签到 ,获得积分10
7秒前
SciGPT应助lili采纳,获得10
7秒前
8秒前
8秒前
river_121完成签到,获得积分10
8秒前
relevance完成签到,获得积分10
9秒前
思源应助白晨采纳,获得10
9秒前
骆123关注了科研通微信公众号
10秒前
10秒前
Owen应助dwj采纳,获得10
10秒前
所所应助会飞的猪采纳,获得10
11秒前
大知闲闲发布了新的文献求助10
12秒前
xiaowan完成签到,获得积分20
12秒前
小伍发布了新的文献求助10
13秒前
CC完成签到 ,获得积分10
14秒前
mouhao1发布了新的文献求助10
15秒前
Sega完成签到,获得积分10
15秒前
谢戴竹完成签到,获得积分20
15秒前
陈情完成签到,获得积分20
16秒前
量子星尘发布了新的文献求助150
17秒前
浮游应助ZHOUZHOU采纳,获得10
17秒前
18秒前
小二郎应助认真的不斜采纳,获得10
18秒前
熊11发布了新的文献求助10
18秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099