Passivating contacts for high-efficiency silicon-based solar cells: From single-junction to tandem architecture

串联 材料科学 光伏系统 工程物理 能量转换效率 光电子学 共发射极 纳米技术 可再生能源 带隙 钝化 晶体硅 电气工程 工程类 复合材料 图层(电子)
作者
Jiakai Zhou,Qian Huang,Yi Ding,Guofu Hou,Ying Zhao
出处
期刊:Nano Energy [Elsevier BV]
卷期号:92: 106712-106712 被引量:58
标识
DOI:10.1016/j.nanoen.2021.106712
摘要

The electricity market from renewable energies is strongly driven by the pursuit of high energy conversion efficiency, which at present represents the most effective pathway to achieve substantial cost reductions. Silicon (Si) have been dominating the photovoltaic industry for decades, while the conversion efficiencies of Si single-junction solar cells are practically limited to around 27%, and intrinsically constrained to 29.4%. To tackle this long-term bottleneck, it is necessary to develop novel technologies and transfer them into industrial production. This paper commences with a review concentrating on two critical concepts enabling high-efficiency Si-based solar cells: passivating contacts and tandem technologies. Since the gradual evolution from full area Al back surface field cells to passivated emitter and rear contact cells, passivating contacts are considered as an essential concept to circumvent the recombination losses caused by the contacts. The theoretical background of the three prominent technologies for passivating contacts and their application prospects to solar cells are described in detail. The fundamental limit of single junction Si solar cells is attainable with the introduction of passivating contacts. To obtain conversion efficiencies greater than 30%, upgrading Si with a high-bandgap tandem partner is a promising approach to improve the utilization of the solar spectrum, having the potential to produce efficiency surpassing the single junction Shockley–Queisser limit. Si is proven to be an ideal bottom cells material in tandem architectures due to its appropriate bandgap for the lower sub-cell and the advantage of compatibility with existing production lines, the technologies for crystalline Si as bottom-cell are already quite mature with a gigawatt scale. The two widely considered ideal options for the top-cell, i.e., III/V and perovskites, are summarized, respectively. Building on these two concepts, a clear technology route is provided to maximize energy conversion efficiency by integration of passivating contacts into Si based tandem solar cells. According to this discussion, guidelines for further developments of Si photovoltaics emerge clearly, proving that Si will continue to maintain its irreplaceable position in photovoltaics in the long term.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Master发布了新的文献求助500
1秒前
天天快乐应助fffffffq采纳,获得10
1秒前
htt应助benben采纳,获得10
2秒前
连安阳完成签到,获得积分10
2秒前
虞紫山完成签到,获得积分10
3秒前
wwww完成签到 ,获得积分10
3秒前
书生完成签到,获得积分10
3秒前
4秒前
6秒前
直率的宛海完成签到,获得积分10
7秒前
Hello应助julia采纳,获得10
7秒前
JL发布了新的文献求助10
9秒前
大模型应助黄腾采纳,获得10
10秒前
顺心的卿发布了新的文献求助10
12秒前
mx应助黑衣人的秘密采纳,获得30
15秒前
Master完成签到,获得积分10
16秒前
受伤的豌豆完成签到,获得积分10
17秒前
17秒前
18秒前
19秒前
20秒前
20秒前
一二发布了新的文献求助10
21秒前
22秒前
NexusExplorer应助野性的沉鱼采纳,获得10
22秒前
大力笑容发布了新的文献求助10
22秒前
23秒前
23秒前
池棠小荷关注了科研通微信公众号
24秒前
aaaaaa发布了新的文献求助10
24秒前
25秒前
三米之内发布了新的文献求助10
26秒前
LW发布了新的文献求助10
26秒前
lydia发布了新的文献求助10
27秒前
Orange应助aaaaaa采纳,获得10
29秒前
执着完成签到,获得积分10
29秒前
一点点完成签到,获得积分10
29秒前
LiJing666发布了新的文献求助10
30秒前
31秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962657
求助须知:如何正确求助?哪些是违规求助? 3508612
关于积分的说明 11142006
捐赠科研通 3241384
什么是DOI,文献DOI怎么找? 1791527
邀请新用户注册赠送积分活动 872916
科研通“疑难数据库(出版商)”最低求助积分说明 803517