Passivating contacts for high-efficiency silicon-based solar cells: From single-junction to tandem architecture

串联 材料科学 光伏系统 工程物理 能量转换效率 光电子学 共发射极 纳米技术 可再生能源 带隙 钝化 晶体硅 电气工程 工程类 复合材料 图层(电子)
作者
Jiakai Zhou,Qian Huang,Yi Ding,Guofu Hou,Ying Zhao
出处
期刊:Nano Energy [Elsevier BV]
卷期号:92: 106712-106712 被引量:64
标识
DOI:10.1016/j.nanoen.2021.106712
摘要

The electricity market from renewable energies is strongly driven by the pursuit of high energy conversion efficiency, which at present represents the most effective pathway to achieve substantial cost reductions. Silicon (Si) have been dominating the photovoltaic industry for decades, while the conversion efficiencies of Si single-junction solar cells are practically limited to around 27%, and intrinsically constrained to 29.4%. To tackle this long-term bottleneck, it is necessary to develop novel technologies and transfer them into industrial production. This paper commences with a review concentrating on two critical concepts enabling high-efficiency Si-based solar cells: passivating contacts and tandem technologies. Since the gradual evolution from full area Al back surface field cells to passivated emitter and rear contact cells, passivating contacts are considered as an essential concept to circumvent the recombination losses caused by the contacts. The theoretical background of the three prominent technologies for passivating contacts and their application prospects to solar cells are described in detail. The fundamental limit of single junction Si solar cells is attainable with the introduction of passivating contacts. To obtain conversion efficiencies greater than 30%, upgrading Si with a high-bandgap tandem partner is a promising approach to improve the utilization of the solar spectrum, having the potential to produce efficiency surpassing the single junction Shockley–Queisser limit. Si is proven to be an ideal bottom cells material in tandem architectures due to its appropriate bandgap for the lower sub-cell and the advantage of compatibility with existing production lines, the technologies for crystalline Si as bottom-cell are already quite mature with a gigawatt scale. The two widely considered ideal options for the top-cell, i.e., III/V and perovskites, are summarized, respectively. Building on these two concepts, a clear technology route is provided to maximize energy conversion efficiency by integration of passivating contacts into Si based tandem solar cells. According to this discussion, guidelines for further developments of Si photovoltaics emerge clearly, proving that Si will continue to maintain its irreplaceable position in photovoltaics in the long term.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
相南相北完成签到 ,获得积分10
2秒前
2秒前
康复小白完成签到 ,获得积分10
8秒前
老高完成签到,获得积分10
9秒前
xmqaq完成签到,获得积分10
9秒前
青水完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
震动的鹏飞完成签到 ,获得积分10
12秒前
朴实觅夏完成签到 ,获得积分10
14秒前
激动的xx完成签到 ,获得积分10
15秒前
sun完成签到 ,获得积分10
19秒前
应夏山完成签到 ,获得积分10
20秒前
23秒前
orixero应助Robbin采纳,获得10
24秒前
24秒前
charleslam完成签到 ,获得积分10
28秒前
量子星尘发布了新的文献求助10
29秒前
小明完成签到 ,获得积分10
29秒前
onevip完成签到,获得积分0
33秒前
33秒前
mm完成签到 ,获得积分10
36秒前
37秒前
mike2012完成签到 ,获得积分10
38秒前
邵小庆发布了新的文献求助10
41秒前
41秒前
mzrrong完成签到 ,获得积分10
43秒前
量子星尘发布了新的文献求助10
44秒前
大气的尔蓝完成签到,获得积分10
46秒前
KKLD完成签到,获得积分10
46秒前
NexusExplorer应助明理问柳采纳,获得10
47秒前
俏皮元珊完成签到 ,获得积分10
48秒前
牛马完成签到 ,获得积分10
51秒前
51秒前
邢夏之完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
53秒前
54秒前
龚文亮发布了新的文献求助10
57秒前
还行吧完成签到 ,获得积分10
57秒前
Zilch完成签到 ,获得积分10
58秒前
邵小庆完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613143
求助须知:如何正确求助?哪些是违规求助? 4018085
关于积分的说明 12437049
捐赠科研通 3700437
什么是DOI,文献DOI怎么找? 2040760
邀请新用户注册赠送积分活动 1073539
科研通“疑难数据库(出版商)”最低求助积分说明 957193