材料科学
成核
电化学
钙钛矿(结构)
化学工程
纳米颗粒
氧化物
微观结构
氧化还原
表面改性
纳米技术
无机化学
电极
化学
冶金
物理化学
工程类
有机化学
作者
Vasileios Kyriakou,Rakesh K. Sharma,Dragos Neagu,F J J Peeters,Oreste De Luca,Petra Rudolf,Arunkumar Pandiyan,Wonjong Yu,Suk Won,S. Welzel,M. C. M. van de Sanden,Mihalis N. Tsampas
标识
DOI:10.1002/smtd.202100868
摘要
Perovskite oxides with dispersed nanoparticles on their surface are considered instrumental in energy conversion and catalytic processes. Redox exsolution is an alternative method to the conventional deposition techniques for directly growing well-dispersed and anchored nanoarchitectures from the oxide support through thermochemical or electrochemical reduction. Herein, a new method for such nanoparticle nucleation through the exposure of the host perovskite to plasma is shown. The applicability of this new method is demonstrated by performing catalytic tests for CO2 hydrogenation over Ni exsolved nanoparticles prepared by either plasma or conventional H2 reduction. Compared to the conventional thermochemical H2 reduction, there are plasma conditions that lead to the exsolution of a more than ten times higher Ni amount from a lanthanum titanate perovskite, which is similar to the reported values of the electrochemical method. Unlike the electrochemical method, however, plasma does not require the integration of the material in an electrochemical cell, and is thus applicable to a wide range of microstructures and physical forms. Additionally, when N2 plasma is employed, the nitrogen species are stripping out oxygen from the perovskite lattice, generating a key chemical intermediate, such as NO, rendering this technology even more appealing.
科研通智能强力驱动
Strongly Powered by AbleSci AI