清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Diagnostic Performance of Machine Learning-Derived OSA Prediction Tools in Large Clinical and Community-Based Samples

医学 逻辑回归 支持向量机 随机森林 人工神经网络 睡眠呼吸暂停 机器学习 内科学 接收机工作特性 人工智能 计算机科学
作者
Steven Holfinger,M. Melanie Lyons,Brendan T Keenan,Diego R. Mazzotti,Jesse Mindel,Greg Maislin,Peter A. Cistulli,Kate Sutherland,Nigel McArdle,Bhajan Singh,Ning‐Hung Chen,Þórarinn Gíslason,Thomas Penzel,Fang Han,Qing Yun Li,Richard J. Schwab,Allan I Pack,Ulysses J. Magalang
出处
期刊:Chest [Elsevier]
卷期号:161 (3): 807-817 被引量:15
标识
DOI:10.1016/j.chest.2021.10.023
摘要

Prediction tools without patient-reported symptoms could facilitate widespread identification of OSA.What is the diagnostic performance of OSA prediction tools derived from machine learning using readily available data without patient responses to questionnaires? Also, how do they compare with STOP-BANG, an OSA prediction tool, in clinical and community-based samples?Logistic regression and machine learning techniques, including artificial neural network (ANN), random forests (RF), and kernel support vector machine, were used to determine the ability of age, sex, BMI, and race to predict OSA status. A retrospective cohort of 17,448 subjects from sleep clinics within the international Sleep Apnea Global Interdisciplinary Consortium (SAGIC) were randomly split into training (n = 10,469) and validation (n = 6,979) sets. Model comparisons were performed by using the area under the receiver-operating curve (AUC). Trained models were compared with the STOP-BANG questionnaire in two prospective testing datasets: an independent clinic-based sample from SAGIC (n = 1,613) and a community-based sample from the Sleep Heart Health Study (n = 5,599).The AUCs (95% CI) of the machine learning models were significantly higher than logistic regression (0.61 [0.60-0.62]) in both the training and validation datasets (ANN, 0.68 [0.66-0.69]; RF, 0.68 [0.67-0.70]; and kernel support vector machine, 0.66 [0.65-0.67]). In the SAGIC testing sample, the ANN (0.70 [0.68-0.72]) and RF (0.70 [0.68-0.73]) models had AUCs similar to those of the STOP-BANG (0.71 [0.68-0.72]). In the Sleep Heart Health Study testing sample, the ANN (0.72 [0.71-0.74]) had AUCs similar to those of STOP-BANG (0.72 [0.70-0.73]).OSA prediction tools using machine learning without patient-reported symptoms provide better diagnostic performance than logistic regression. In clinical and community-based samples, the symptomless ANN tool has diagnostic performance similar to that of a widely used prediction tool that includes patient symptoms. Machine learning-derived algorithms may have utility for widespread identification of OSA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liao完成签到,获得积分10
4秒前
貔貅完成签到 ,获得积分10
17秒前
舒服的幼荷完成签到,获得积分10
1分钟前
1分钟前
1分钟前
hiiiiiii发布了新的文献求助10
2分钟前
2分钟前
2分钟前
顾矜应助llllly采纳,获得10
2分钟前
hiiiiiii完成签到 ,获得积分10
3分钟前
3分钟前
坚强的广山完成签到,获得积分0
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
Eric800824完成签到 ,获得积分10
5分钟前
6分钟前
zsmj23完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
哈哈完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
8分钟前
8分钟前
9分钟前
9分钟前
肆肆完成签到,获得积分10
10分钟前
10分钟前
锋feng完成签到 ,获得积分10
11分钟前
你博哥完成签到 ,获得积分10
11分钟前
13分钟前
陶沛发布了新的文献求助10
13分钟前
大喵完成签到,获得积分10
14分钟前
爱静静完成签到,获得积分0
15分钟前
Jenny完成签到 ,获得积分10
15分钟前
书文混四方完成签到 ,获得积分10
17分钟前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162343
求助须知:如何正确求助?哪些是违规求助? 2813330
关于积分的说明 7899736
捐赠科研通 2472848
什么是DOI,文献DOI怎么找? 1316533
科研通“疑难数据库(出版商)”最低求助积分说明 631375
版权声明 602142