Identification and Prognostic Value Exploration of Cyclophosphamide (Cytoxan)-Centered Chemotherapy Response-Associated Genes in Breast Cancer

列线图 比例危险模型 肿瘤科 生物 环磷酰胺 单变量 多元统计 内科学 多元分析 乳腺癌 癌症 化疗 医学 遗传学 统计 数学
作者
Jiawei Du,Yanru Dong,Yuhong Li
出处
期刊:DNA and Cell Biology [Mary Ann Liebert]
卷期号:40 (11): 1356-1368 被引量:9
标识
DOI:10.1089/dna.2021.0077
摘要

In this study, we aimed to explore cyclophosphamide (Cytoxan) response-associated genes and constructed a model to predict the prognosis of breast cancer (BRCA) patients. Samples obtained from TCGA and GEO databases were subjected to Weighted Gene Coexpression Network Analysis (WGCNA) and univariate Cox and LASSO Cox regression analysis to identify and validate the Cytoxan response-related prognostic signature. Moreover, multivariate Cox regression analysis was performed to analyze the independence of factors, and the nomogram model was constructed by including all the independent factors. WGCNA revealed that 159 genes are significantly correlated with Cytoxan response in BRCA samples, and the samples with a different prognosis could be effectively distinguished based on the expression of those 159 genes. Ten genes were further selected to be related to the prognosis of BRCA patients, including PCDHB2, GRIK2, FRMD7, CCSER1, PCDHGA1, PCDHA1, LRRC37A6P, PCDHGA12, ZNF486, and PCDHGB5, based on the Risk Score model. Among them, PCDHA1 expression was validated in cells and patient samples. Multivariate Cox regression analysis confirmed that the Risk Score is an independent factor. Furthermore, the nomogram model showed that the predicted survival probability is closely related to the actual survival probability. In conclusion, we identified 159 genes potentially correlated with the Cytoxan response of BRCA patients, which had prognostic value in BRCA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
。.。发布了新的文献求助10
1秒前
1秒前
kylin发布了新的文献求助10
1秒前
2秒前
2秒前
谦让的思枫完成签到,获得积分10
2秒前
3秒前
搜集达人应助备注采纳,获得10
4秒前
5秒前
想飞的熊发布了新的文献求助10
5秒前
5秒前
文静的峻熙完成签到,获得积分10
5秒前
superman完成签到 ,获得积分10
6秒前
Dora发布了新的文献求助10
6秒前
7秒前
moon发布了新的文献求助10
7秒前
八宝粥我爱喝完成签到 ,获得积分10
8秒前
8秒前
李书荣完成签到 ,获得积分10
8秒前
往死里看完成签到,获得积分20
8秒前
9秒前
Efei发布了新的文献求助10
10秒前
xxxxxxxx发布了新的文献求助10
11秒前
小二郎应助ZRDJ采纳,获得10
11秒前
12秒前
chosmos完成签到,获得积分10
13秒前
13秒前
胖虎发布了新的文献求助10
14秒前
14秒前
14秒前
小值钱发布了新的文献求助10
16秒前
16秒前
17秒前
19秒前
19秒前
研友_Y59785应助阳光的中蓝采纳,获得10
19秒前
Hello应助。.。采纳,获得10
19秒前
pop发布了新的文献求助10
20秒前
沉默馒头发布了新的文献求助10
20秒前
幽默海燕完成签到,获得积分10
20秒前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3470559
求助须知:如何正确求助?哪些是违规求助? 3063526
关于积分的说明 9084066
捐赠科研通 2754015
什么是DOI,文献DOI怎么找? 1511182
邀请新用户注册赠送积分活动 698310
科研通“疑难数据库(出版商)”最低求助积分说明 698182