生物
脂肪组织
基因
脂质代谢
候选基因
小桶
RNA序列
转录组
遗传学
基因表达
内分泌学
作者
Siyuan Wang,Jie Liu,Weiming Zhao,Guofu Wang,Shuxin Gao
标识
DOI:10.1080/10495398.2021.1991937
摘要
The site of fat deposition plays an important role in meat quality and body health. Biologically, the perirenal visceral fat (PF) and back subcutaneous fat (BF) are distinct. Angus and Simmental cattle (Bos taurus) were used as models. HE staining, triglyceride assay kit and RNA-seq were used to analyze the differences in tissue morphology and lipid accumulation, co-genes, and differentially expressed genes (DEGs) between the two tissues. According to the findings, BF has a smaller cell area and greater lipid deposition ability than PF. RNA-seq generated approximately 10.99 Gb of data in each library, and 23,472 genes were identified. The genes FABP4, ADIRF, and SCD that are related to adipose deposition were highly expressed in four tissues. There were 1678 DEGs and 1955 DEGs between BF and PF in Angus and Simmental cattle respectively. Gene Ontology function analysis identified several DEGs involved in metabolism. KEGG pathway analysis showed that four pathways related to fat metabolism were enriched. In the BF, seven genes (COL1A1, COL1A2, COL3A1, COL2A1, RXRA, C1QTNF7, and MOGAT2) were up-regulated. Five genes (ADRB3, ABHD5, CPT1B, CD36, LPIN1) were down-regulated. This study identified candidate genes that led to differences in fat metabolism, which could be useful in cattle breeding.
科研通智能强力驱动
Strongly Powered by AbleSci AI