亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system

模型预测控制 控制理论(社会学) 线性化 空调 恒温器 非线性系统 计算机科学 控制工程 计算 建筑模型 控制(管理) 工程类 模拟 人工智能 算法 物理 机械工程 量子力学
作者
Shiyu Yang,Man Pun Wan
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118041-118041 被引量:10
标识
DOI:10.1016/j.apenergy.2021.118041
摘要

• A machine learning-based model predictive control with instantaneous linearization. • The instantaneous linearization linearizes the machine learning models recurrently. • The proposed control is implemented in an office for air-conditioning control. • The proposed control achieves 26% energy savings with better thermal comfort. • The proposed control is 70 times faster than nonlinear model predictive control. Machine-learning (ML) –based building models have been gaining popularity in constructing model predictive control (MPC) for building energy management applications. However, ML-based building models are usually nonlinear so to capture the building dynamics, leading to high computation load for MPC, prohibiting its application for real-time building control. This study proposes a ML-based MPC with an instantaneous linearization (IL) scheme, which employs real-time building operation data to linearize the nonlinear ML-based building model for constructing a linear MPC at each control interval. The proposed ML-based MPC with IL system is implemented to control an air conditioning system in an office of a general hospital building located in Singapore for experimental evaluation of its control performance. The ML-based MPC with IL is compared to a ML-based MPC that directly uses a nonlinear ML-based building model and the original reactive-control-based thermostat of the office. Results show that the ML-based MPC with IL significantly reduced the computation time (by more than 70 times) as compared to the ML-based MPC while retained most of the advantages of the ML-based MPC. The ML-based MPC with IL and the ML-based MPC achieved 31.6% and 26.0% reductions, respectively, in cooling energy consumption as compared to the original thermostat. Meanwhile, both the MPC systems significantly improved indoor thermal comfort for the office as compared to the original thermostat. The study demonstrated that using IL for ML-based MPC could substantially improve computation efficiency with no obvious performance degradation in terms of thermal comfort and energy saving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangwang发布了新的文献求助200
刚刚
后会无期完成签到,获得积分10
7秒前
nefu biology发布了新的文献求助10
7秒前
科研通AI2S应助科研通管家采纳,获得10
11秒前
15秒前
17秒前
21秒前
飞快的羊青完成签到 ,获得积分20
34秒前
37秒前
西红柿炒番茄应助Georgechan采纳,获得30
39秒前
寻道图强完成签到,获得积分0
41秒前
43秒前
乐乐乐乐乐乐应助远方采纳,获得10
51秒前
布丁大师发布了新的文献求助10
51秒前
52秒前
李爱国应助zhangshenlan采纳,获得10
54秒前
JamesPei应助雪中采纳,获得10
1分钟前
小二郎应助坚定岂愈采纳,获得10
1分钟前
未来可期发布了新的文献求助10
1分钟前
lanxinyue应助爱笑的栀虞采纳,获得10
1分钟前
alien52发布了新的文献求助30
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
小潮完成签到,获得积分10
1分钟前
ZengLY发布了新的文献求助30
1分钟前
szc完成签到,获得积分10
1分钟前
zhangshenlan完成签到 ,获得积分10
1分钟前
1分钟前
坚定岂愈发布了新的文献求助10
2分钟前
2分钟前
杨迅发布了新的文献求助80
2分钟前
乐乐应助科研通管家采纳,获得10
2分钟前
Orange应助iii采纳,获得10
2分钟前
Jasper应助杨迅采纳,获得80
2分钟前
研友_VZG7GZ应助123采纳,获得10
2分钟前
矮小的盼夏完成签到 ,获得积分10
2分钟前
不配.完成签到,获得积分0
2分钟前
2分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150492
求助须知:如何正确求助?哪些是违规求助? 2801881
关于积分的说明 7845873
捐赠科研通 2459235
什么是DOI,文献DOI怎么找? 1309099
科研通“疑难数据库(出版商)”最低求助积分说明 628656
版权声明 601727