已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system

模型预测控制 控制理论(社会学) 线性化 空调 恒温器 非线性系统 计算机科学 控制工程 计算 建筑模型 控制(管理) 工程类 模拟 人工智能 算法 物理 机械工程 量子力学
作者
Shiyu Yang,Man Pun Wan
出处
期刊:Applied Energy [Elsevier]
卷期号:306: 118041-118041 被引量:10
标识
DOI:10.1016/j.apenergy.2021.118041
摘要

• A machine learning-based model predictive control with instantaneous linearization. • The instantaneous linearization linearizes the machine learning models recurrently. • The proposed control is implemented in an office for air-conditioning control. • The proposed control achieves 26% energy savings with better thermal comfort. • The proposed control is 70 times faster than nonlinear model predictive control. Machine-learning (ML) –based building models have been gaining popularity in constructing model predictive control (MPC) for building energy management applications. However, ML-based building models are usually nonlinear so to capture the building dynamics, leading to high computation load for MPC, prohibiting its application for real-time building control. This study proposes a ML-based MPC with an instantaneous linearization (IL) scheme, which employs real-time building operation data to linearize the nonlinear ML-based building model for constructing a linear MPC at each control interval. The proposed ML-based MPC with IL system is implemented to control an air conditioning system in an office of a general hospital building located in Singapore for experimental evaluation of its control performance. The ML-based MPC with IL is compared to a ML-based MPC that directly uses a nonlinear ML-based building model and the original reactive-control-based thermostat of the office. Results show that the ML-based MPC with IL significantly reduced the computation time (by more than 70 times) as compared to the ML-based MPC while retained most of the advantages of the ML-based MPC. The ML-based MPC with IL and the ML-based MPC achieved 31.6% and 26.0% reductions, respectively, in cooling energy consumption as compared to the original thermostat. Meanwhile, both the MPC systems significantly improved indoor thermal comfort for the office as compared to the original thermostat. The study demonstrated that using IL for ML-based MPC could substantially improve computation efficiency with no obvious performance degradation in terms of thermal comfort and energy saving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
西瓜完成签到,获得积分10
1秒前
小马甲应助大气颜演采纳,获得10
1秒前
元儿圆完成签到,获得积分10
1秒前
伶俐的金连完成签到 ,获得积分10
1秒前
嗷嗷发布了新的文献求助10
1秒前
皮卡丘发布了新的文献求助10
2秒前
Cheshire完成签到,获得积分10
3秒前
gogpou完成签到 ,获得积分10
3秒前
安详初蓝完成签到 ,获得积分10
3秒前
风雨发布了新的文献求助30
4秒前
6秒前
钰L发布了新的文献求助10
7秒前
老天师一巴掌完成签到 ,获得积分10
8秒前
梦醒完成签到,获得积分10
8秒前
司纤户羽完成签到 ,获得积分10
8秒前
8秒前
繁笙完成签到 ,获得积分10
9秒前
稳重的蜜蜂完成签到,获得积分10
10秒前
大气幻丝完成签到,获得积分10
10秒前
ty完成签到 ,获得积分10
10秒前
11秒前
hhq完成签到 ,获得积分10
12秒前
13秒前
黑米粥发布了新的文献求助10
13秒前
13秒前
雨众不同123完成签到 ,获得积分10
14秒前
小彭陪小崔读个研完成签到 ,获得积分10
14秒前
redamancy完成签到 ,获得积分10
14秒前
klio完成签到 ,获得积分10
14秒前
ccm应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
Lucas应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
14秒前
ccm应助科研通管家采纳,获得10
14秒前
浮游应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
GingerF应助科研通管家采纳,获得30
15秒前
GingerF应助科研通管家采纳,获得50
15秒前
天天快乐应助科研通管家采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458670
求助须知:如何正确求助?哪些是违规求助? 4564690
关于积分的说明 14296542
捐赠科研通 4489739
什么是DOI,文献DOI怎么找? 2459274
邀请新用户注册赠送积分活动 1448998
关于科研通互助平台的介绍 1424502