Machine-learning-based model predictive control with instantaneous linearization – A case study on an air-conditioning and mechanical ventilation system

模型预测控制 控制理论(社会学) 线性化 空调 恒温器 非线性系统 计算机科学 控制工程 计算 建筑模型 控制(管理) 工程类 模拟 人工智能 算法 物理 机械工程 量子力学
作者
Shiyu Yang,Man Pun Wan
出处
期刊:Applied Energy [Elsevier BV]
卷期号:306: 118041-118041 被引量:10
标识
DOI:10.1016/j.apenergy.2021.118041
摘要

• A machine learning-based model predictive control with instantaneous linearization. • The instantaneous linearization linearizes the machine learning models recurrently. • The proposed control is implemented in an office for air-conditioning control. • The proposed control achieves 26% energy savings with better thermal comfort. • The proposed control is 70 times faster than nonlinear model predictive control. Machine-learning (ML) –based building models have been gaining popularity in constructing model predictive control (MPC) for building energy management applications. However, ML-based building models are usually nonlinear so to capture the building dynamics, leading to high computation load for MPC, prohibiting its application for real-time building control. This study proposes a ML-based MPC with an instantaneous linearization (IL) scheme, which employs real-time building operation data to linearize the nonlinear ML-based building model for constructing a linear MPC at each control interval. The proposed ML-based MPC with IL system is implemented to control an air conditioning system in an office of a general hospital building located in Singapore for experimental evaluation of its control performance. The ML-based MPC with IL is compared to a ML-based MPC that directly uses a nonlinear ML-based building model and the original reactive-control-based thermostat of the office. Results show that the ML-based MPC with IL significantly reduced the computation time (by more than 70 times) as compared to the ML-based MPC while retained most of the advantages of the ML-based MPC. The ML-based MPC with IL and the ML-based MPC achieved 31.6% and 26.0% reductions, respectively, in cooling energy consumption as compared to the original thermostat. Meanwhile, both the MPC systems significantly improved indoor thermal comfort for the office as compared to the original thermostat. The study demonstrated that using IL for ML-based MPC could substantially improve computation efficiency with no obvious performance degradation in terms of thermal comfort and energy saving.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Betty发布了新的文献求助10
刚刚
somnus发布了新的文献求助10
刚刚
星落枝头完成签到,获得积分10
1秒前
2秒前
2秒前
摩天大楼发布了新的文献求助10
2秒前
3秒前
星落枝头发布了新的文献求助10
3秒前
艾小晗发布了新的文献求助10
3秒前
超级的诗兰完成签到,获得积分10
6秒前
凉薄少年应助王二八采纳,获得10
6秒前
柳煜城发布了新的文献求助10
7秒前
荔枝完成签到,获得积分10
8秒前
小哈发布了新的文献求助20
8秒前
8秒前
XieQinxie完成签到,获得积分10
10秒前
yang发布了新的文献求助10
10秒前
Stroeve发布了新的文献求助10
11秒前
xiyuexue完成签到,获得积分10
12秒前
12秒前
12秒前
小猫宝完成签到,获得积分10
14秒前
14秒前
Ssyong完成签到 ,获得积分10
16秒前
zyyyyyy发布了新的文献求助10
17秒前
许初完成签到,获得积分20
17秒前
pxy发布了新的文献求助10
17秒前
爆米花应助biubiu采纳,获得10
17秒前
luo发布了新的文献求助10
18秒前
CodeCraft应助Cccrik采纳,获得10
18秒前
摩天大楼完成签到,获得积分10
18秒前
阿苏完成签到,获得积分10
19秒前
可爱的函函应助yang采纳,获得10
19秒前
今后应助黄宇阳采纳,获得10
23秒前
23秒前
pxy完成签到,获得积分10
24秒前
神鸢发布了新的文献求助30
26秒前
27秒前
zhikaiyici完成签到,获得积分10
28秒前
Hello应助pingli19861002采纳,获得10
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954525
求助须知:如何正确求助?哪些是违规求助? 3500615
关于积分的说明 11100212
捐赠科研通 3231137
什么是DOI,文献DOI怎么找? 1786269
邀请新用户注册赠送积分活动 869920
科研通“疑难数据库(出版商)”最低求助积分说明 801719