Data-Driven system identification of 6-DoF ship motion in waves with neural networks

人工神经网络 海况 运动(物理) 帧(网络) 计算机科学 船舶运动 海洋工程 国家(计算机科学) 鉴定(生物学) 期限(时间) 人工智能 工程类 模拟 船体 算法 地质学 电信 遥感 物理 生物 量子力学 植物
作者
Kevin M. Silva,Kevin J. Maki
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:125: 103222-103222 被引量:53
标识
DOI:10.1016/j.apor.2022.103222
摘要

Critical evaluation of ship responses in the ocean is important for not only the design and engineering of future platforms but also the operation and safety of those that are currently deployed. Short-term temporal predictions of ship responses given the current wave environment and ship state would enable enhanced decision-making onboard and reduce the overall risk for both manned and unmanned vessels, especially as the marine industry trends towards more autonomy. However, state-of-the-art numerical hydrodynamic simulation tools are too computationally expensive to be employed for real-time ship motion forecasting. Thus, a methodology is needed to provide fast predictions with levels of accuracy closer to the higher-fidelity tools. A methodology is developed with long short-term memory (LSTM) neural networks to represent the motions of a free running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in Sea State 7 stern-quartering long-crested irregular seas. Case studies are performed for both course-keeping and turning circle scenarios. An estimate of the vessel’s encounter frame is made with the trajectories observed in the training dataset. Wave elevation time histories are given by artificial wave probes that travel with the estimated encounter frame and serve as input into the neural network, while the output is the 6-DOF temporal ship motion response. Overall, the neural network is able to predict the temporal response of the ship due to unseen wave sequences accurately. The methodology, the dependence of model accuracy on wave probe and training data quantity and the estimated encounter frame are all detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
果酱君完成签到,获得积分10
刚刚
刚刚
1秒前
zzz发布了新的文献求助10
1秒前
kingwill应助江南烟雨如笙采纳,获得20
2秒前
2秒前
zrk发布了新的文献求助10
2秒前
小毕可乐完成签到,获得积分10
3秒前
zc19891130完成签到,获得积分10
3秒前
烟花应助晗仔采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
5秒前
小蘑菇应助zhui采纳,获得10
5秒前
5秒前
虚心的冷雪完成签到,获得积分20
6秒前
科研小白发布了新的文献求助10
6秒前
苹果萧发布了新的文献求助10
7秒前
zhihan发布了新的文献求助10
8秒前
Hao发布了新的文献求助10
8秒前
8秒前
Orange应助贾不可采纳,获得10
8秒前
李健的小迷弟应助贾不可采纳,获得10
8秒前
FashionBoy应助贾不可采纳,获得10
8秒前
奋斗的夜山完成签到 ,获得积分10
8秒前
yana发布了新的文献求助20
8秒前
yijiubingshi完成签到,获得积分10
9秒前
苏南完成签到 ,获得积分10
9秒前
冰激凌UP发布了新的文献求助10
9秒前
SCI发布了新的文献求助10
9秒前
CD发布了新的文献求助10
9秒前
10秒前
yan123发布了新的文献求助10
11秒前
11秒前
充电宝应助yyj采纳,获得10
11秒前
马静雨发布了新的文献求助10
11秒前
云游归尘发布了新的文献求助10
12秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794