Data-Driven system identification of 6-DoF ship motion in waves with neural networks

人工神经网络 海况 运动(物理) 帧(网络) 计算机科学 船舶运动 海洋工程 国家(计算机科学) 鉴定(生物学) 期限(时间) 人工智能 工程类 模拟 船体 算法 地质学 电信 遥感 物理 生物 量子力学 植物
作者
Kevin M. Silva,Kevin J. Maki
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:125: 103222-103222 被引量:53
标识
DOI:10.1016/j.apor.2022.103222
摘要

Critical evaluation of ship responses in the ocean is important for not only the design and engineering of future platforms but also the operation and safety of those that are currently deployed. Short-term temporal predictions of ship responses given the current wave environment and ship state would enable enhanced decision-making onboard and reduce the overall risk for both manned and unmanned vessels, especially as the marine industry trends towards more autonomy. However, state-of-the-art numerical hydrodynamic simulation tools are too computationally expensive to be employed for real-time ship motion forecasting. Thus, a methodology is needed to provide fast predictions with levels of accuracy closer to the higher-fidelity tools. A methodology is developed with long short-term memory (LSTM) neural networks to represent the motions of a free running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in Sea State 7 stern-quartering long-crested irregular seas. Case studies are performed for both course-keeping and turning circle scenarios. An estimate of the vessel’s encounter frame is made with the trajectories observed in the training dataset. Wave elevation time histories are given by artificial wave probes that travel with the estimated encounter frame and serve as input into the neural network, while the output is the 6-DOF temporal ship motion response. Overall, the neural network is able to predict the temporal response of the ship due to unseen wave sequences accurately. The methodology, the dependence of model accuracy on wave probe and training data quantity and the estimated encounter frame are all detailed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猪猪hero发布了新的文献求助10
刚刚
善学以致用应助健壮梦菡采纳,获得10
1秒前
yy发布了新的文献求助10
2秒前
Lyuoah发布了新的文献求助10
3秒前
Coco完成签到,获得积分10
3秒前
Akim应助小鱼1213采纳,获得10
3秒前
3秒前
淡淡土豆应助豆芽菜采纳,获得10
4秒前
小乐应助平淡的博涛采纳,获得10
4秒前
鱼鱼发布了新的文献求助10
4秒前
pinkjo驳回了思源应助
4秒前
5秒前
求助人员应助鹤九采纳,获得10
5秒前
小伙子完成签到,获得积分10
6秒前
8秒前
巴布发布了新的文献求助10
10秒前
10秒前
LEON发布了新的文献求助10
13秒前
慕青应助断舍离采纳,获得10
13秒前
李健的小迷弟应助yy采纳,获得10
14秒前
11发布了新的文献求助10
14秒前
17秒前
巴布完成签到,获得积分10
17秒前
史聪聪完成签到,获得积分10
17秒前
团子团子猪完成签到,获得积分10
18秒前
江上清风游完成签到,获得积分10
18秒前
18秒前
碗在水中央完成签到 ,获得积分10
18秒前
啦啦啦完成签到,获得积分10
19秒前
LEON完成签到,获得积分10
19秒前
20秒前
20秒前
GQ完成签到,获得积分10
21秒前
paul发布了新的文献求助10
21秒前
tiantian完成签到 ,获得积分10
22秒前
史蒂夫完成签到,获得积分10
22秒前
量子星尘发布了新的文献求助10
24秒前
jonghuang发布了新的文献求助10
25秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5517878
求助须知:如何正确求助?哪些是违规求助? 4610584
关于积分的说明 14523037
捐赠科研通 4547786
什么是DOI,文献DOI怎么找? 2491899
邀请新用户注册赠送积分活动 1473355
关于科研通互助平台的介绍 1445234