Data-Driven system identification of 6-DoF ship motion in waves with neural networks

人工神经网络 海况 运动(物理) 帧(网络) 计算机科学 船舶运动 海洋工程 国家(计算机科学) 鉴定(生物学) 期限(时间) 人工智能 工程类 模拟 船体 算法 地质学 电信 遥感 物理 生物 量子力学 植物
作者
Kevin M. Silva,Kevin J. Maki
出处
期刊:Applied Ocean Research [Elsevier BV]
卷期号:125: 103222-103222 被引量:53
标识
DOI:10.1016/j.apor.2022.103222
摘要

Critical evaluation of ship responses in the ocean is important for not only the design and engineering of future platforms but also the operation and safety of those that are currently deployed. Short-term temporal predictions of ship responses given the current wave environment and ship state would enable enhanced decision-making onboard and reduce the overall risk for both manned and unmanned vessels, especially as the marine industry trends towards more autonomy. However, state-of-the-art numerical hydrodynamic simulation tools are too computationally expensive to be employed for real-time ship motion forecasting. Thus, a methodology is needed to provide fast predictions with levels of accuracy closer to the higher-fidelity tools. A methodology is developed with long short-term memory (LSTM) neural networks to represent the motions of a free running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in Sea State 7 stern-quartering long-crested irregular seas. Case studies are performed for both course-keeping and turning circle scenarios. An estimate of the vessel’s encounter frame is made with the trajectories observed in the training dataset. Wave elevation time histories are given by artificial wave probes that travel with the estimated encounter frame and serve as input into the neural network, while the output is the 6-DOF temporal ship motion response. Overall, the neural network is able to predict the temporal response of the ship due to unseen wave sequences accurately. The methodology, the dependence of model accuracy on wave probe and training data quantity and the estimated encounter frame are all detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助eco采纳,获得10
刚刚
xinyi发布了新的文献求助10
1秒前
桐桐应助小何同学采纳,获得10
1秒前
1秒前
1秒前
1秒前
chen发布了新的文献求助10
1秒前
汉堡包应助生动绫采纳,获得10
2秒前
wanci发布了新的文献求助50
2秒前
2秒前
2秒前
橘涂发布了新的文献求助10
2秒前
2秒前
2秒前
Shawn发布了新的文献求助10
3秒前
早睡早起发布了新的文献求助10
3秒前
3秒前
4秒前
维拉帕米完成签到,获得积分10
5秒前
小小莫发布了新的文献求助10
5秒前
充电宝应助净净子采纳,获得10
5秒前
5秒前
玛卡巴卡发布了新的文献求助10
5秒前
wsw111完成签到,获得积分10
5秒前
93完成签到,获得积分10
5秒前
科研通AI5应助SHENLE采纳,获得10
6秒前
6秒前
6秒前
磊大彪发布了新的文献求助10
7秒前
Leo完成签到,获得积分10
7秒前
xcz发布了新的文献求助10
7秒前
7秒前
吕玥函发布了新的文献求助10
7秒前
8秒前
8秒前
共享精神应助灵巧谷芹采纳,获得10
9秒前
冷酷尔琴发布了新的文献求助10
9秒前
丰富飞阳完成签到,获得积分10
9秒前
9秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4576564
求助须知:如何正确求助?哪些是违规求助? 3995786
关于积分的说明 12370127
捐赠科研通 3669784
什么是DOI,文献DOI怎么找? 2022420
邀请新用户注册赠送积分活动 1056472
科研通“疑难数据库(出版商)”最低求助积分说明 943675