Data-Driven system identification of 6-DoF ship motion in waves with neural networks

人工神经网络 海况 运动(物理) 帧(网络) 计算机科学 船舶运动 海洋工程 国家(计算机科学) 鉴定(生物学) 期限(时间) 人工智能 工程类 模拟 船体 算法 地质学 电信 遥感 物理 生物 量子力学 植物
作者
Kevin M. Silva,Kevin J. Maki
出处
期刊:Applied Ocean Research [Elsevier BV]
卷期号:125: 103222-103222 被引量:53
标识
DOI:10.1016/j.apor.2022.103222
摘要

Critical evaluation of ship responses in the ocean is important for not only the design and engineering of future platforms but also the operation and safety of those that are currently deployed. Short-term temporal predictions of ship responses given the current wave environment and ship state would enable enhanced decision-making onboard and reduce the overall risk for both manned and unmanned vessels, especially as the marine industry trends towards more autonomy. However, state-of-the-art numerical hydrodynamic simulation tools are too computationally expensive to be employed for real-time ship motion forecasting. Thus, a methodology is needed to provide fast predictions with levels of accuracy closer to the higher-fidelity tools. A methodology is developed with long short-term memory (LSTM) neural networks to represent the motions of a free running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in Sea State 7 stern-quartering long-crested irregular seas. Case studies are performed for both course-keeping and turning circle scenarios. An estimate of the vessel’s encounter frame is made with the trajectories observed in the training dataset. Wave elevation time histories are given by artificial wave probes that travel with the estimated encounter frame and serve as input into the neural network, while the output is the 6-DOF temporal ship motion response. Overall, the neural network is able to predict the temporal response of the ship due to unseen wave sequences accurately. The methodology, the dependence of model accuracy on wave probe and training data quantity and the estimated encounter frame are all detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助务实的惜寒采纳,获得10
1秒前
1秒前
4秒前
deway发布了新的文献求助10
4秒前
Kinn完成签到,获得积分10
6秒前
6秒前
粥粥完成签到 ,获得积分10
6秒前
研友_8Y26PL完成签到 ,获得积分10
7秒前
cc完成签到,获得积分10
8秒前
喃恬完成签到,获得积分10
10秒前
爆米花应助联勤杜闯采纳,获得10
10秒前
佟谷兰完成签到,获得积分10
11秒前
斯文败类应助deway采纳,获得10
11秒前
雷霆康康完成签到,获得积分10
12秒前
七七完成签到 ,获得积分10
13秒前
14秒前
Jovie给Jovie的求助进行了留言
14秒前
14秒前
14秒前
香菜完成签到,获得积分10
16秒前
老婆婆不讲理完成签到,获得积分10
17秒前
量子星尘发布了新的文献求助10
18秒前
Minicoper发布了新的文献求助10
18秒前
19秒前
Zhaowx完成签到,获得积分10
20秒前
magic_sweets完成签到,获得积分10
21秒前
Antonio完成签到,获得积分10
21秒前
坚定的老六完成签到,获得积分10
21秒前
枫叶完成签到 ,获得积分10
22秒前
爆米花应助wangnn采纳,获得10
23秒前
24秒前
Minicoper完成签到,获得积分10
24秒前
小帅完成签到,获得积分10
24秒前
tao完成签到 ,获得积分10
24秒前
96完成签到 ,获得积分10
25秒前
枕雪听冷冷完成签到,获得积分20
27秒前
Jovie完成签到,获得积分10
28秒前
29秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
2026国自然单细胞多组学大红书申报宝典 800
Real Analysis Theory of Measure and Integration 3rd Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4910822
求助须知:如何正确求助?哪些是违规求助? 4186436
关于积分的说明 12999794
捐赠科研通 3954003
什么是DOI,文献DOI怎么找? 2168246
邀请新用户注册赠送积分活动 1186614
关于科研通互助平台的介绍 1093909