Data-Driven system identification of 6-DoF ship motion in waves with neural networks

人工神经网络 海况 运动(物理) 帧(网络) 计算机科学 船舶运动 海洋工程 国家(计算机科学) 鉴定(生物学) 期限(时间) 人工智能 工程类 模拟 船体 算法 地质学 电信 遥感 物理 生物 量子力学 植物
作者
Kevin M. Silva,Kevin J. Maki
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:125: 103222-103222 被引量:53
标识
DOI:10.1016/j.apor.2022.103222
摘要

Critical evaluation of ship responses in the ocean is important for not only the design and engineering of future platforms but also the operation and safety of those that are currently deployed. Short-term temporal predictions of ship responses given the current wave environment and ship state would enable enhanced decision-making onboard and reduce the overall risk for both manned and unmanned vessels, especially as the marine industry trends towards more autonomy. However, state-of-the-art numerical hydrodynamic simulation tools are too computationally expensive to be employed for real-time ship motion forecasting. Thus, a methodology is needed to provide fast predictions with levels of accuracy closer to the higher-fidelity tools. A methodology is developed with long short-term memory (LSTM) neural networks to represent the motions of a free running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in Sea State 7 stern-quartering long-crested irregular seas. Case studies are performed for both course-keeping and turning circle scenarios. An estimate of the vessel’s encounter frame is made with the trajectories observed in the training dataset. Wave elevation time histories are given by artificial wave probes that travel with the estimated encounter frame and serve as input into the neural network, while the output is the 6-DOF temporal ship motion response. Overall, the neural network is able to predict the temporal response of the ship due to unseen wave sequences accurately. The methodology, the dependence of model accuracy on wave probe and training data quantity and the estimated encounter frame are all detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刘源完成签到,获得积分10
1秒前
大个应助LS采纳,获得10
1秒前
诸事皆顺完成签到,获得积分10
2秒前
Denvir发布了新的文献求助80
2秒前
suhua完成签到,获得积分10
2秒前
athena完成签到 ,获得积分10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
舒博博完成签到 ,获得积分10
4秒前
张haha完成签到 ,获得积分20
5秒前
5秒前
渭春天合完成签到,获得积分10
5秒前
华仔应助honghuhe采纳,获得10
5秒前
昭奚发布了新的文献求助10
5秒前
6秒前
研友_VZG7GZ应助tmj采纳,获得10
7秒前
8秒前
8秒前
飘逸烨华完成签到,获得积分10
9秒前
小蘑菇应助tangrzh采纳,获得30
9秒前
xxfsx应助轻松的妍采纳,获得10
9秒前
9秒前
Yang发布了新的文献求助30
9秒前
LSF发布了新的文献求助10
9秒前
xxfsx应助温柔梦易采纳,获得10
10秒前
yly发布了新的文献求助10
10秒前
10秒前
喂喂喂完成签到,获得积分10
12秒前
脑洞疼应助穆思柔采纳,获得10
12秒前
12秒前
yzh发布了新的文献求助30
12秒前
喜悦的如娆完成签到,获得积分10
12秒前
14秒前
哈哈哈哈发布了新的文献求助10
14秒前
LS发布了新的文献求助10
14秒前
自由盼山发布了新的文献求助10
15秒前
舒心明杰发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458439
求助须知:如何正确求助?哪些是违规求助? 4564491
关于积分的说明 14295328
捐赠科研通 4489396
什么是DOI,文献DOI怎么找? 2459047
邀请新用户注册赠送积分活动 1448864
关于科研通互助平台的介绍 1424466