亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Driven system identification of 6-DoF ship motion in waves with neural networks

人工神经网络 海况 运动(物理) 帧(网络) 计算机科学 船舶运动 海洋工程 国家(计算机科学) 鉴定(生物学) 期限(时间) 人工智能 工程类 模拟 船体 算法 地质学 电信 遥感 物理 生物 量子力学 植物
作者
Kevin M. Silva,Kevin J. Maki
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:125: 103222-103222 被引量:53
标识
DOI:10.1016/j.apor.2022.103222
摘要

Critical evaluation of ship responses in the ocean is important for not only the design and engineering of future platforms but also the operation and safety of those that are currently deployed. Short-term temporal predictions of ship responses given the current wave environment and ship state would enable enhanced decision-making onboard and reduce the overall risk for both manned and unmanned vessels, especially as the marine industry trends towards more autonomy. However, state-of-the-art numerical hydrodynamic simulation tools are too computationally expensive to be employed for real-time ship motion forecasting. Thus, a methodology is needed to provide fast predictions with levels of accuracy closer to the higher-fidelity tools. A methodology is developed with long short-term memory (LSTM) neural networks to represent the motions of a free running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in Sea State 7 stern-quartering long-crested irregular seas. Case studies are performed for both course-keeping and turning circle scenarios. An estimate of the vessel’s encounter frame is made with the trajectories observed in the training dataset. Wave elevation time histories are given by artificial wave probes that travel with the estimated encounter frame and serve as input into the neural network, while the output is the 6-DOF temporal ship motion response. Overall, the neural network is able to predict the temporal response of the ship due to unseen wave sequences accurately. The methodology, the dependence of model accuracy on wave probe and training data quantity and the estimated encounter frame are all detailed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呈歌完成签到 ,获得积分10
9秒前
9秒前
托塔大王发布了新的文献求助10
13秒前
13秒前
13秒前
领导范儿应助贝果采纳,获得10
17秒前
田様应助托塔大王采纳,获得10
19秒前
George发布了新的文献求助10
19秒前
19秒前
28秒前
DD完成签到 ,获得积分10
28秒前
科研通AI6应助wsl采纳,获得10
32秒前
呆萌初南完成签到 ,获得积分10
34秒前
36秒前
xd_c完成签到,获得积分10
40秒前
Criminology34应助欢呼的瑶采纳,获得10
44秒前
姜颀关注了科研通微信公众号
44秒前
45秒前
VWVWV完成签到 ,获得积分10
50秒前
Criminology34应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
Criminology34应助科研通管家采纳,获得10
51秒前
ilk666完成签到,获得积分10
53秒前
59秒前
科研通AI2S应助George采纳,获得10
1分钟前
欣慰外套完成签到 ,获得积分10
1分钟前
文艺怀蝶发布了新的文献求助10
1分钟前
Swj完成签到,获得积分10
1分钟前
1分钟前
lin123完成签到 ,获得积分10
1分钟前
姜颀发布了新的文献求助10
1分钟前
1分钟前
orixero应助Swj采纳,获得10
1分钟前
dddddd发布了新的文献求助10
1分钟前
ss发布了新的文献求助10
1分钟前
小小怪发布了新的文献求助10
1分钟前
包容仙人掌完成签到,获得积分10
1分钟前
1分钟前
xuke完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5595654
求助须知:如何正确求助?哪些是违规求助? 4680904
关于积分的说明 14817961
捐赠科研通 4651226
什么是DOI,文献DOI怎么找? 2535539
邀请新用户注册赠送积分活动 1503494
关于科研通互助平台的介绍 1469754