亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Data-Driven system identification of 6-DoF ship motion in waves with neural networks

人工神经网络 海况 运动(物理) 帧(网络) 计算机科学 船舶运动 海洋工程 国家(计算机科学) 鉴定(生物学) 期限(时间) 人工智能 工程类 模拟 船体 算法 地质学 电信 遥感 物理 生物 量子力学 植物
作者
Kevin M. Silva,Kevin J. Maki
出处
期刊:Applied Ocean Research [Elsevier]
卷期号:125: 103222-103222 被引量:53
标识
DOI:10.1016/j.apor.2022.103222
摘要

Critical evaluation of ship responses in the ocean is important for not only the design and engineering of future platforms but also the operation and safety of those that are currently deployed. Short-term temporal predictions of ship responses given the current wave environment and ship state would enable enhanced decision-making onboard and reduce the overall risk for both manned and unmanned vessels, especially as the marine industry trends towards more autonomy. However, state-of-the-art numerical hydrodynamic simulation tools are too computationally expensive to be employed for real-time ship motion forecasting. Thus, a methodology is needed to provide fast predictions with levels of accuracy closer to the higher-fidelity tools. A methodology is developed with long short-term memory (LSTM) neural networks to represent the motions of a free running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in Sea State 7 stern-quartering long-crested irregular seas. Case studies are performed for both course-keeping and turning circle scenarios. An estimate of the vessel’s encounter frame is made with the trajectories observed in the training dataset. Wave elevation time histories are given by artificial wave probes that travel with the estimated encounter frame and serve as input into the neural network, while the output is the 6-DOF temporal ship motion response. Overall, the neural network is able to predict the temporal response of the ship due to unseen wave sequences accurately. The methodology, the dependence of model accuracy on wave probe and training data quantity and the estimated encounter frame are all detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
5秒前
Owen应助科研通管家采纳,获得10
5秒前
6秒前
小球完成签到,获得积分10
8秒前
9秒前
DJ国完成签到,获得积分10
9秒前
DJ国发布了新的文献求助10
12秒前
ChampionJ发布了新的文献求助10
14秒前
14秒前
找不完发布了新的文献求助10
19秒前
xiongyh10完成签到,获得积分10
21秒前
27秒前
27秒前
QQ发布了新的文献求助10
28秒前
31秒前
33秒前
QQ完成签到,获得积分10
34秒前
3D完成签到 ,获得积分10
37秒前
42秒前
45秒前
kkk完成签到 ,获得积分10
48秒前
51秒前
苏恒屿发布了新的文献求助10
55秒前
yunxiao完成签到 ,获得积分10
1分钟前
Hello应助小小鹅采纳,获得10
1分钟前
子平完成签到 ,获得积分10
1分钟前
lcf完成签到,获得积分10
1分钟前
lanxinge完成签到 ,获得积分10
1分钟前
1分钟前
慕青应助3D采纳,获得10
1分钟前
Shueason完成签到 ,获得积分10
1分钟前
1分钟前
花花完成签到 ,获得积分10
1分钟前
1分钟前
YafishYc发布了新的文献求助10
1分钟前
jgwang发布了新的文献求助10
1分钟前
asaki完成签到,获得积分10
1分钟前
2分钟前
2分钟前
VDC应助科研通管家采纳,获得20
2分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344111
求助须知:如何正确求助?哪些是违规求助? 2971140
关于积分的说明 8646635
捐赠科研通 2651377
什么是DOI,文献DOI怎么找? 1451722
科研通“疑难数据库(出版商)”最低求助积分说明 672250
邀请新用户注册赠送积分活动 661788