Data-Driven system identification of 6-DoF ship motion in waves with neural networks

人工神经网络 海况 运动(物理) 帧(网络) 计算机科学 船舶运动 海洋工程 国家(计算机科学) 鉴定(生物学) 期限(时间) 人工智能 工程类 模拟 船体 算法 地质学 电信 遥感 物理 生物 量子力学 植物
作者
Kevin M. Silva,Kevin J. Maki
出处
期刊:Applied Ocean Research [Elsevier BV]
卷期号:125: 103222-103222 被引量:53
标识
DOI:10.1016/j.apor.2022.103222
摘要

Critical evaluation of ship responses in the ocean is important for not only the design and engineering of future platforms but also the operation and safety of those that are currently deployed. Short-term temporal predictions of ship responses given the current wave environment and ship state would enable enhanced decision-making onboard and reduce the overall risk for both manned and unmanned vessels, especially as the marine industry trends towards more autonomy. However, state-of-the-art numerical hydrodynamic simulation tools are too computationally expensive to be employed for real-time ship motion forecasting. Thus, a methodology is needed to provide fast predictions with levels of accuracy closer to the higher-fidelity tools. A methodology is developed with long short-term memory (LSTM) neural networks to represent the motions of a free running David Taylor Model Basin (DTMB) 5415 destroyer operating at 20 knots in Sea State 7 stern-quartering long-crested irregular seas. Case studies are performed for both course-keeping and turning circle scenarios. An estimate of the vessel’s encounter frame is made with the trajectories observed in the training dataset. Wave elevation time histories are given by artificial wave probes that travel with the estimated encounter frame and serve as input into the neural network, while the output is the 6-DOF temporal ship motion response. Overall, the neural network is able to predict the temporal response of the ship due to unseen wave sequences accurately. The methodology, the dependence of model accuracy on wave probe and training data quantity and the estimated encounter frame are all detailed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
zssl完成签到,获得积分10
2秒前
安年发布了新的文献求助10
3秒前
有知发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
4秒前
喜多米430发布了新的文献求助10
4秒前
一一发布了新的文献求助10
4秒前
huazhangchina发布了新的文献求助10
5秒前
鲤鱼安青完成签到,获得积分10
5秒前
Geo_new完成签到,获得积分20
5秒前
凌波丽发布了新的文献求助30
7秒前
领导范儿应助lvjiahui采纳,获得10
7秒前
jiao完成签到 ,获得积分10
8秒前
威武巧曼发布了新的文献求助10
8秒前
yang完成签到,获得积分10
9秒前
yan123发布了新的文献求助10
9秒前
曹晓龙发布了新的文献求助10
10秒前
852应助阿橘采纳,获得10
10秒前
李爱国应助anyilin采纳,获得10
10秒前
wjm完成签到,获得积分10
11秒前
西原的橙果完成签到,获得积分10
11秒前
zhou国兵完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
谁能卷过你啊完成签到,获得积分10
13秒前
13秒前
14秒前
14秒前
威武巧曼完成签到,获得积分10
15秒前
栗子完成签到 ,获得积分10
15秒前
bkagyin应助yan123采纳,获得10
16秒前
辛勤太阳发布了新的文献求助10
16秒前
Cody发布了新的文献求助10
17秒前
LPeaQ应助TTT0530采纳,获得10
17秒前
学术小迷发布了新的文献求助10
18秒前
凌兰完成签到 ,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198