Comparative analysis of hippocampal transcriptional features between major depressive disorder patients and animal models

海马结构 重性抑郁障碍 神经科学 动物模型 心理学 医学 精神科 内科学 认知
作者
Siwen Gui,Yiyun Liu,Juncai Pu,Xuemian Song,Xiaopeng Chen,Weiyi Chen,Xiaogang Zhong,Haiyang Wang,Lanxiang Liu,Peng Xie
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:293: 19-28 被引量:10
标识
DOI:10.1016/j.jad.2021.06.007
摘要

Major depressive disorder (MDD) is a psychiatric disorder caused by various etiologies. Chronic stress models are used to simulate the heterogeneous pathogenic processes of depression. However, few studies have compared transcriptional features between stress models and MDD patients.We generated hippocampal transcriptional profiles of the chronic social defeat model by RNA sequencing and downloaded raw data of the same brain region from public databases of the chronic unpredictable mild stress model, the learned helplessness model, and MDD patients. Differential expression and gene co-expression analyses were integrated to compare transcriptional features between stress models and MDD patients.Each stress model shared 11.4% to 16.3% of differentially expressed genes with MDD patients. Functional analysis at the gene expression level identified altered ensheathment of neurons in both stress models and MDD patients. At the gene network level, each stress model shared 20.9% to 41.6% of co-expressed genes with MDD patients. Functional analysis based on these genes found that axon guidance signaling is the most significantly enriched pathway that was shared by all stress models and MDD patients.This study was limited by considering only a single brain region and a single sex of stress model animals.Our results show that hippocampal transcriptional features of stress models partially overlap with those of MDD patients. The canonical pathways of MDD patients, including ensheathment of neurons, PTEN signaling, and axonal guidance signaling, were shared with all stress models. Our findings provide further clues to understand the molecular mechanisms of depression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
zfy完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
5秒前
w17638619025完成签到 ,获得积分20
6秒前
撒上咖啡应助科研通管家采纳,获得10
6秒前
顾矜应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
慕青应助科研通管家采纳,获得10
7秒前
菠萝吹雪应助科研通管家采纳,获得30
7秒前
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
李爱国应助科研通管家采纳,获得10
7秒前
7秒前
西内!卡Q因完成签到,获得积分10
8秒前
我是125应助www采纳,获得10
8秒前
小二郎应助鲜艳的棒棒糖采纳,获得10
8秒前
Zzzzzzzzzzz发布了新的文献求助10
8秒前
长情若魔发布了新的文献求助10
8秒前
酷酷酷完成签到,获得积分10
9秒前
9秒前
BaekHyun发布了新的文献求助10
10秒前
xuex1发布了新的文献求助10
10秒前
孙皓然完成签到 ,获得积分10
11秒前
13秒前
13秒前
15秒前
逐风给逐风的求助进行了留言
16秒前
科研通AI5应助灌饼采纳,获得30
16秒前
Owen应助Zzzzzzzzzzz采纳,获得10
17秒前
18秒前
19秒前
巫马秋寒应助笑点低可乐采纳,获得10
19秒前
xuex1完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808