Prostate Cancer Biomarkers: From diagnosis to prognosis and precision-guided therapeutics

医学 前列腺癌 疾病 癌症 临床试验 生物标志物发现 重症监护医学 生物信息学 肿瘤科 内科学 蛋白质组学 生物 生物化学 基因
作者
Maria Adamaki,Vassilios Zoumpourlis
出处
期刊:Pharmacology & Therapeutics [Elsevier]
卷期号:228: 107932-107932 被引量:82
标识
DOI:10.1016/j.pharmthera.2021.107932
摘要

Prostate cancer (PCa) is one of the most commonly diagnosed malignancies and among the leading causes of cancer-related death worldwide. It is a highly heterogeneous disease, ranging from remarkably slow progression or inertia to highly aggressive and fatal disease. As therapeutic decision-making, clinical trial design and outcome highly depend on the appropriate stratification of patients to risk groups, it is imperative to differentiate between benign versus more aggressive states. The incorporation of clinically valuable prognostic and predictive biomarkers is also potentially amenable in this process, in the timely prevention of metastatic disease and in the decision for therapy selection. This review summarizes the progress that has so far been made in the identification of the genomic events that can be used for the classification, prediction and prognostication of PCa, and as major targets for clinical intervention. We include an extensive list of emerging biomarkers for which there is enough preclinical evidence to suggest that they may constitute crucial targets for achieving significant advances in the management of the disease. Finally, we highlight the main challenges that are associated with the identification of clinically significant PCa biomarkers and recommend possible ways to overcome such limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助西瓜采纳,获得10
刚刚
ding应助李广发采纳,获得10
1秒前
shi hui应助热情的戾采纳,获得10
1秒前
EJChen应助热情的戾采纳,获得10
1秒前
mrz完成签到,获得积分10
2秒前
星辰大海应助阜睿采纳,获得10
3秒前
麻团儿发布了新的文献求助10
3秒前
4秒前
4秒前
wu完成签到,获得积分10
4秒前
LXa134发布了新的文献求助10
5秒前
5秒前
Nabi完成签到 ,获得积分10
6秒前
6秒前
哈哈哈发布了新的文献求助10
6秒前
Moliria完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
8秒前
英姑应助maliwen采纳,获得10
9秒前
SciGPT应助可靠的lld采纳,获得10
9秒前
10秒前
11秒前
11秒前
zwhy完成签到,获得积分10
11秒前
Tanyang应助wu采纳,获得20
11秒前
麻团儿完成签到,获得积分10
11秒前
今后应助淡淡猕猴桃采纳,获得10
12秒前
大白完成签到,获得积分10
12秒前
Sevi发布了新的文献求助10
12秒前
13秒前
一一发布了新的文献求助10
14秒前
14秒前
雨碎寒江发布了新的文献求助10
14秒前
lin发布了新的文献求助10
14秒前
情怀应助满意的仙人掌采纳,获得10
16秒前
16秒前
大白发布了新的文献求助10
16秒前
Marybaby发布了新的文献求助30
16秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3490263
求助须知:如何正确求助?哪些是违规求助? 3077255
关于积分的说明 9148229
捐赠科研通 2769499
什么是DOI,文献DOI怎么找? 1519724
邀请新用户注册赠送积分活动 704238
科研通“疑难数据库(出版商)”最低求助积分说明 702113