Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes

病菌 开枪 植物抗病性 生物 单核苷酸多态性 园艺 作物 农学 微生物学 生物化学 基因 基因型
作者
Xuesong Cao,Chuanxi Wang,Xing Luo,Le Yue,Jason C. White,Wade H. Elmer,Om Parkash Dhankher,Zhenyu Wang,Baoshan Xing
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (7): 11817-11827 被引量:77
标识
DOI:10.1021/acsnano.1c02917
摘要

In agriculture, loss of crop yield to pathogen damage seriously threatens efforts to achieve global food security. In the present work, "organic" elemental sulfur nanoparticles (SNPs) were investigated for management of the fungal pathogen Fusarium oxysporum f. sp. lycopersici on tomatoes. Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 1 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30-SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of the expression of pathogenesis-related and antioxidase-related genes (upregulated by 11–352%) and enhancement of the activity and content of disease-related biomolecules (enhanced by 5–49%). In addition, transmission electron microscopy imaging shows that SNPs were distributed in the tomato stem and directly inactivated in vivo pathogens. The oxidative stress in tomato shoots and roots, the root plasma membrane damage, and the growth of the pathogen in stem were all significantly decreased by SNPs. The findings highlight the significant potential of SNPs as an eco-friendly and sustainable crop protection strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lily完成签到,获得积分10
2秒前
moneymonoo发布了新的文献求助40
3秒前
3秒前
Ava应助嘻嘻采纳,获得10
6秒前
。。发布了新的文献求助10
7秒前
7秒前
SLQ关闭了SLQ文献求助
8秒前
Orange应助lsl采纳,获得10
8秒前
9秒前
9秒前
慕青应助mm采纳,获得10
9秒前
耍酷的梦桃完成签到,获得积分10
10秒前
慈祥的爆米花完成签到,获得积分10
11秒前
12秒前
12秒前
Dawn发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
花啊拾肆完成签到,获得积分10
15秒前
华子完成签到,获得积分10
17秒前
马路完成签到 ,获得积分10
17秒前
粥粥卷完成签到,获得积分10
18秒前
18秒前
黑土发布了新的文献求助10
19秒前
欢呼从寒发布了新的文献求助10
19秒前
花啊拾肆发布了新的文献求助30
20秒前
嘻嘻发布了新的文献求助10
21秒前
今后应助AeroY采纳,获得10
21秒前
科研通AI2S应助courage采纳,获得10
22秒前
Omni发布了新的文献求助10
22秒前
23秒前
23秒前
liao发布了新的文献求助50
23秒前
拓小八发布了新的文献求助10
24秒前
weirdo完成签到,获得积分10
24秒前
25秒前
26秒前
科研通AI2S应助tobino1采纳,获得10
26秒前
orixero应助小林不熬夜采纳,获得10
26秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135616
求助须知:如何正确求助?哪些是违规求助? 2786482
关于积分的说明 7777675
捐赠科研通 2442483
什么是DOI,文献DOI怎么找? 1298583
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847