Spatial-Temporal Dynamic Graph Convolution Neural Network for Air Quality Prediction

计算机科学 图形 邻接矩阵 卷积(计算机科学) 数据挖掘 残余物 空间分析 邻接表 人工智能 模式识别(心理学) 算法 人工神经网络 理论计算机科学 数学 统计
作者
Xiaocao Ouyang,Yan Yang,Shujun Zhang,Wei Zhou
标识
DOI:10.1109/ijcnn52387.2021.9534167
摘要

Air quality prediction has received widespread attention from both the governments and citizens due to its close relation to our lives. Analyzing the spatial relations and temporal trends in air quality data is essential for air quality prediction task. However, most existing approaches require a pre-defined graph structure to capture the spatial dependencies of air quality data, and thus they can not be applied when a well-defined graph structure is unavailable. Besides, those methods do not give sufficient consideration to the latent relationships among entities of the graph over time. To overcome the above limitations, we propose a Spatial-Temporal Dynamic Graph Convolution Neural Network (ST-DGCN) in this paper. Our approach develops a dynamic adjacency matrix into graph convolution layer, which extracts the potential and time-varying spatial dependencies. To jointly model the spatial and temporal correlations, we combine dynamic graph convolution with gated recurrent unit and propose a unified DGC-GRU block. Next, a residual operation is further introduced into the DGC-GRU to simultaneously handle the information from different particles. Experimental results demonstrate that the proposed method outperforms the state-of-art baselines on two real-world air quality datasets.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HLT完成签到,获得积分10
刚刚
TJH完成签到,获得积分10
刚刚
yang完成签到,获得积分10
刚刚
Mae完成签到 ,获得积分10
1秒前
vvvvvv完成签到,获得积分10
1秒前
天天快乐完成签到,获得积分10
1秒前
1秒前
翟庆春发布了新的文献求助10
1秒前
1秒前
是菜团子呀完成签到 ,获得积分10
2秒前
医学生Mavis完成签到,获得积分10
2秒前
诸觅双完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
dc完成签到,获得积分10
3秒前
3秒前
SciGPT应助木木采纳,获得10
4秒前
Doctor完成签到,获得积分10
4秒前
4秒前
LV发布了新的文献求助10
4秒前
Wayne完成签到,获得积分10
4秒前
万能图书馆应助陈慕枫采纳,获得10
4秒前
5秒前
DDD完成签到,获得积分10
5秒前
5秒前
悦耳盼海完成签到,获得积分10
6秒前
爪人猫完成签到,获得积分10
6秒前
逝水无痕发布了新的文献求助10
7秒前
petrichor完成签到,获得积分10
7秒前
闪闪凝梦完成签到 ,获得积分10
7秒前
CodeCraft应助Faceman采纳,获得10
7秒前
lyk2815完成签到,获得积分10
7秒前
飞奔小子发布了新的文献求助10
8秒前
8秒前
柯米克发布了新的文献求助10
8秒前
虚幻采枫发布了新的文献求助10
8秒前
腾飞完成签到,获得积分10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573825
求助须知:如何正确求助?哪些是违规求助? 4660098
关于积分的说明 14727788
捐赠科研通 4599933
什么是DOI,文献DOI怎么找? 2524546
邀请新用户注册赠送积分活动 1494900
关于科研通互助平台的介绍 1464997