Auction design for cross-edge task offloading in heterogeneous mobile edge clouds

计算机科学 双重拍卖 云计算 反向拍卖 移动边缘计算 拍卖算法 分布式计算 拍卖理论 服务器 水准点(测量) 任务(项目管理) GSM演进的增强数据速率 共同价值拍卖 计算机网络 收入等值 微观经济学 操作系统 人工智能 经济 管理 地理 大地测量学
作者
Weifeng Lü,Wei Wu,Jia Xu,Pengcheng Zhao,Dejun Yang,Lijie Xu
出处
期刊:Computer Communications [Elsevier]
卷期号:181: 90-101 被引量:11
标识
DOI:10.1016/j.comcom.2021.09.035
摘要

Task offloading is a promising technology to exploit the available resources in edge cloud efficiently. Many incentive mechanisms for offloading systems have been proposed. However, most of existing works study the centralized incentive mechanisms under the assumption that all mobile edge infrastructures are operated by a central cloud. In this paper, we aim to design the auction-based truthful incentive mechanisms for heavily loaded task offloading system in heterogeneous MECs. We first study the homogeneous MEC situation and present a global auction executed in the central cloud as a benchmark. For the heterogeneous MEC situation, we model the system as a dual auction framework, which enables the heterogeneous MECs to perform cross-edge task offloading without the participation of central servers. Specifically, we design two dual auction models: secondary auction-based model, which enables the system to offload tasks from a large-scale region in a single auction, and double auction-based model, which is suitable for the time sensitive tasks. Then the auctions for these two dual auction models are proposed. Through rigorous theoretical analysis, we demonstrate that the proposed auctions achieve desirable properties of computational efficiency, individual rationality, budget balance, truthfulness, and guaranteed approximation. The simulation results show that the secondary auction and double auction can obtain 14.5% and 4.2% more social welfare than comparison algorithm on average, respectively. In addition, the double auction has great advantage in terms of computation efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李大仁发布了新的文献求助10
1秒前
柟枫完成签到,获得积分10
2秒前
Hello应助HRIFFIN采纳,获得10
2秒前
3秒前
852应助啊哈采纳,获得10
3秒前
李燕君发布了新的文献求助10
4秒前
zanilia应助淡然平灵采纳,获得10
4秒前
HEIKU应助aini925采纳,获得10
5秒前
天天快乐应助无心的太君采纳,获得10
5秒前
8秒前
8秒前
搜集达人应助ldj6670采纳,获得10
9秒前
gaogaogao完成签到,获得积分10
9秒前
丰知然应助RRR采纳,获得10
9秒前
10秒前
Coco完成签到,获得积分10
10秒前
小九发布了新的文献求助10
11秒前
CodeCraft应助ZKK采纳,获得10
11秒前
泌尿邓发布了新的文献求助10
12秒前
万能图书馆应助zzc采纳,获得10
13秒前
ferrycake应助xibei采纳,获得20
13秒前
照桥心美发布了新的文献求助10
14秒前
16秒前
LJbe2o发布了新的文献求助10
16秒前
18秒前
18秒前
shi hui完成签到,获得积分10
19秒前
今天没烦恼完成签到 ,获得积分10
20秒前
20秒前
21秒前
HEIKU应助aini925采纳,获得10
21秒前
23秒前
隐形曼青应助一站到底采纳,获得10
23秒前
整齐珩发布了新的文献求助10
23秒前
25秒前
望月暑生发布了新的文献求助10
25秒前
大模型应助LJbe2o采纳,获得10
26秒前
acca发布了新的文献求助30
26秒前
28秒前
良辰应助拉丝耶耶采纳,获得10
28秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306956
求助须知:如何正确求助?哪些是违规求助? 2940786
关于积分的说明 8498612
捐赠科研通 2614927
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663447
邀请新用户注册赠送积分活动 648297