素数(序理论)
计算生物学
基因组编辑
计算机科学
生物
化学
生物化学
清脆的
基因
数学
组合数学
作者
James W. Nelson,Peyton B. Randolph,Simon P. Shen,Kelcee A. Everette,Peter J. Chen,Andrew V. Anzalone,Meirui An,Gregory A. Newby,Jonathan C. Chen,Alvin Hsu,David Liu
标识
DOI:10.1038/s41587-021-01039-7
摘要
Prime editing enables the installation of virtually any combination of point mutations, small insertions or small deletions in the DNA of living cells. A prime editing guide RNA (pegRNA) directs the prime editor protein to the targeted locus and also encodes the desired edit. Here we show that degradation of the 3' region of the pegRNA that contains the reverse transcriptase template and the primer binding site can poison the activity of prime editing systems, impeding editing efficiency. We incorporated structured RNA motifs to the 3' terminus of pegRNAs that enhance their stability and prevent degradation of the 3' extension. The resulting engineered pegRNAs (epegRNAs) improve prime editing efficiency 3-4-fold in HeLa, U2OS and K562 cells and in primary human fibroblasts without increasing off-target editing activity. We optimized the choice of 3' structural motif and developed pegLIT, a computational tool to identify non-interfering nucleotide linkers between pegRNAs and 3' motifs. Finally, we showed that epegRNAs enhance the efficiency of the installation or correction of disease-relevant mutations.
科研通智能强力驱动
Strongly Powered by AbleSci AI