A novel data-driven air balancing method with energy-saving constraint strategy to minimize the energy consumption of ventilation system

阻尼器 能源消耗 气流 高效能源利用 控制理论(社会学) 能量(信号处理) 计算机科学 电压 能源管理 模拟 工程类 汽车工程 控制工程 控制(管理) 电气工程 人工智能 机械工程 数学 统计
作者
Fanyong Cheng,Peng Wang,Wenjian Cai,Xin Zhang,Yuan Ge,Bingxu Li
出处
期刊:Energy [Elsevier BV]
卷期号:239: 122146-122146 被引量:5
标识
DOI:10.1016/j.energy.2021.122146
摘要

Air balancing is a key technology to reduce energy consumption of ventilation system and improve the quality of indoor living environment. So far, most of the existing data-driven non-iterative air balancing methods only focus on the prediction of terminal damper angle to supply appropriate airflow, but they do not pay attention to the energy-saving constraint of fan voltage and terminal damper. Therefore, their energy efficiencies are not high enough. In this paper, energy-saving constraint strategy of low fan voltage and small damper friction resistance is considered and a novel data-driven non-iterative air balancing model with energy-saving constraint strategy is proposed. The model parameters can be trained by the proposed optimization algorithm inputting acquisition data. Then, given a design airflow rate, the required fan voltage and terminal damper angle can be predicted by the trained model to achieve accurate air balancing control with high energy efficiency. The performance validation of the proposed method is executed on our experimental duct system with five terminals. Compared with the current air balancing method, the proposed method can improve energy saving potential up to 13.7%, while keeping accurate air balancing within 10% relative error standard. • A novel non-iterative air balancing method is proposed for ventilation system. • Energy-saving constraint strategy is considered to minimize energy consumption. • The method accurately predicts the position of coupling dampers for air balancing. • The method improves energy efficiency through energy-saving constraint strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助caiyuedong采纳,获得10
1秒前
1秒前
儒雅HR完成签到,获得积分10
1秒前
2秒前
鳗鱼友灵发布了新的文献求助10
2秒前
几米杨完成签到,获得积分10
2秒前
所所应助o10采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
柯一一应助科研通管家采纳,获得10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
柯一一应助科研通管家采纳,获得10
3秒前
聪明白秋应助科研通管家采纳,获得20
3秒前
爆米花应助科研通管家采纳,获得10
3秒前
8R60d8应助科研通管家采纳,获得10
4秒前
田様应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
FashionBoy应助赵程程采纳,获得10
4秒前
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
SYLH应助科研通管家采纳,获得10
4秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
柯一一应助科研通管家采纳,获得10
4秒前
Susan发布了新的文献求助10
4秒前
搜集达人应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
YiWei发布了新的文献求助10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
4秒前
852应助科研通管家采纳,获得10
4秒前
4秒前
YSJ应助咩咩兔采纳,获得10
5秒前
在水一方应助嘟嘟采纳,获得10
5秒前
7秒前
zxt发布了新的文献求助10
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956458
求助须知:如何正确求助?哪些是违规求助? 3502597
关于积分的说明 11109039
捐赠科研通 3233376
什么是DOI,文献DOI怎么找? 1787315
邀请新用户注册赠送积分活动 870585
科研通“疑难数据库(出版商)”最低求助积分说明 802122