已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

“Un”Fair Machine Learning Algorithms

算法 计算机科学 机器学习 利润(经济学) 奇偶性(物理) 人工智能 立法 差别性影响 经济 法学 微观经济学 政治学 粒子物理学 物理 最高法院
作者
Runshan Fu,Manmohan Aseri,Param Vir Singh,Kannan Srinivasan
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:68 (6): 4173-4195 被引量:44
标识
DOI:10.1287/mnsc.2021.4065
摘要

Ensuring fairness in algorithmic decision making is a crucial policy issue. Current legislation ensures fairness by barring algorithm designers from using demographic information in their decision making. As a result, to be legally compliant, the algorithms need to ensure equal treatment. However, in many cases, ensuring equal treatment leads to disparate impact particularly when there are differences among groups based on demographic classes. In response, several “fair” machine learning (ML) algorithms that require impact parity (e.g., equal opportunity) at the cost of equal treatment have recently been proposed to adjust for the societal inequalities. Advocates of fair ML propose changing the law to allow the use of protected class-specific decision rules. We show that the proposed fair ML algorithms that require impact parity, while conceptually appealing, can make everyone worse off, including the very class they aim to protect. Compared with the current law, which requires treatment parity, the fair ML algorithms, which require impact parity, limit the benefits of a more accurate algorithm for a firm. As a result, profit maximizing firms could underinvest in learning, that is, improving the accuracy of their machine learning algorithms. We show that the investment in learning decreases when misclassification is costly, which is exactly the case when greater accuracy is otherwise desired. Our paper highlights the importance of considering strategic behavior of stake holders when developing and evaluating fair ML algorithms. Overall, our results indicate that fair ML algorithms that require impact parity, if turned into law, may not be able to deliver some of the anticipated benefits. This paper was accepted by Kartik Hosanagar, information systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
爆米花应助小稻草人采纳,获得10
3秒前
完美世界应助源源采纳,获得10
3秒前
Ellie完成签到,获得积分10
3秒前
3秒前
坚强猫咪完成签到,获得积分10
4秒前
5秒前
5秒前
沉思猫完成签到,获得积分10
6秒前
一手灵魂发布了新的文献求助10
7秒前
15秒前
烟花应助Gilbert采纳,获得10
16秒前
16秒前
源源发布了新的文献求助10
19秒前
19秒前
柏事发布了新的文献求助10
20秒前
21秒前
22秒前
橘子海发布了新的文献求助10
23秒前
23秒前
由由应助科研通管家采纳,获得10
25秒前
香蕉觅云应助科研通管家采纳,获得10
26秒前
26秒前
Ava应助科研通管家采纳,获得10
26秒前
不配.应助科研通管家采纳,获得20
26秒前
iNk应助科研通管家采纳,获得10
26秒前
科目三应助科研通管家采纳,获得10
26秒前
大个应助科研通管家采纳,获得10
26秒前
VDC应助科研通管家采纳,获得30
26秒前
爆米花应助科研通管家采纳,获得10
26秒前
由由应助科研通管家采纳,获得10
26秒前
上官若男应助科研通管家采纳,获得10
26秒前
27秒前
慕青应助阳光的晓刚采纳,获得10
28秒前
28秒前
秋秋发布了新的文献求助10
29秒前
Gilbert完成签到,获得积分20
30秒前
橘子海完成签到,获得积分10
30秒前
botanist完成签到 ,获得积分10
32秒前
haoran发布了新的文献求助10
32秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
歯科矯正学 第7版(或第5版) 1004
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Security Awareness: Applying Practical Cybersecurity in Your World 6th Edition 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3241626
求助须知:如何正确求助?哪些是违规求助? 2886085
关于积分的说明 8241566
捐赠科研通 2554630
什么是DOI,文献DOI怎么找? 1382714
科研通“疑难数据库(出版商)”最低求助积分说明 649622
邀请新用户注册赠送积分活动 625279