Isolation and reconstruction of cardiac mitochondria from SBEM images using a deep learning-based method

分割 线粒体 人工智能 模式识别(心理学) 计算机科学 生物 计算机视觉 细胞生物学
作者
Asuka Hatano,Makoto Someya,Hiroaki Tanaka,Hiroki Sakakima,Satoshi Izumi,Masahiko Hoshijima,Mark H. Ellisman,Andrew D. McCulloch
出处
期刊:Journal of Structural Biology [Elsevier]
卷期号:214 (1): 107806-107806 被引量:3
标识
DOI:10.1016/j.jsb.2021.107806
摘要

Mitochondrial morphological defects are a common feature of diseased cardiac myocytes. However, quantitative assessment of mitochondrial morphology is limited by the time-consuming manual segmentation of electron micrograph (EM) images. To advance understanding of the relation between morphological defects and dysfunction, an efficient morphological reconstruction method is desired to enable isolation and reconstruction of mitochondria from EM images. We propose a new method for isolating and reconstructing single mitochondria from serial block-face scanning EM (SBEM) images. CDeep3M, a cloud-based deep learning network for EM images, was used to segment mitochondrial interior volumes and boundaries. Post-processing was performed using both the predicted interior volume and exterior boundary to isolate and reconstruct individual mitochondria. Series of SBEM images from two separate cardiac myocytes were processed. The highest F1-score was 95% using 50 training datasets, greater than that for previously reported automated methods and comparable to manual segmentations. Accuracy of separation of individual mitochondria was 80% on a pixel basis. A total of 2315 mitochondria in the two series of SBEM images were evaluated with a mean volume of 0.78 µm3. The volume distribution was very broad and skewed; the most frequent mitochondria were 0.04-0.06 µm3, but mitochondria larger than 2.0 µm3 accounted for more than 10% of the total number. The average short-axis length was 0.47 µm. Primarily longitudinal mitochondria (0-30 degrees) were dominant (54%). This new automated segmentation and separation method can help quantitate mitochondrial morphology and improve understanding of myocyte structure-function relationships.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jolene66完成签到,获得积分10
刚刚
研友_8RlQ2n发布了新的文献求助10
刚刚
1秒前
852应助Pangsj采纳,获得10
1秒前
Song完成签到 ,获得积分10
1秒前
1秒前
2秒前
大胆夜绿发布了新的文献求助10
2秒前
Dr终年完成签到,获得积分10
2秒前
katharsis完成签到,获得积分10
2秒前
Ricardo发布了新的文献求助10
3秒前
歪歪象发布了新的文献求助10
3秒前
zeno123456完成签到,获得积分10
3秒前
陈某某发布了新的文献求助10
3秒前
4秒前
he完成签到,获得积分10
4秒前
4秒前
科研小民工应助忍冬半夏采纳,获得30
4秒前
小马甲应助年华采纳,获得10
4秒前
4秒前
CipherSage应助开放的听枫采纳,获得10
4秒前
Never stall发布了新的文献求助10
4秒前
4秒前
Jolene66发布了新的文献求助10
5秒前
zy完成签到,获得积分10
5秒前
Adzuki0812完成签到,获得积分10
5秒前
5秒前
5秒前
6秒前
6秒前
Anne应助哇哈哈采纳,获得10
7秒前
四季刻歌完成签到,获得积分10
7秒前
忆点儿孤狼完成签到,获得积分10
7秒前
搜集达人应助高贵的迎蕾采纳,获得10
7秒前
华仔应助一平采纳,获得10
8秒前
汉堡包应助bluer采纳,获得10
8秒前
8秒前
8秒前
直率心锁完成签到,获得积分10
8秒前
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678