亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Isolation and reconstruction of cardiac mitochondria from SBEM images using a deep learning-based method

分割 线粒体 人工智能 模式识别(心理学) 计算机科学 生物 计算机视觉 细胞生物学
作者
Asuka Hatano,Makoto Someya,Hiroaki Tanaka,Hiroki Sakakima,Satoshi Izumi,Masahiko Hoshijima,Mark H. Ellisman,Andrew D. McCulloch
出处
期刊:Journal of Structural Biology [Elsevier]
卷期号:214 (1): 107806-107806 被引量:3
标识
DOI:10.1016/j.jsb.2021.107806
摘要

Mitochondrial morphological defects are a common feature of diseased cardiac myocytes. However, quantitative assessment of mitochondrial morphology is limited by the time-consuming manual segmentation of electron micrograph (EM) images. To advance understanding of the relation between morphological defects and dysfunction, an efficient morphological reconstruction method is desired to enable isolation and reconstruction of mitochondria from EM images. We propose a new method for isolating and reconstructing single mitochondria from serial block-face scanning EM (SBEM) images. CDeep3M, a cloud-based deep learning network for EM images, was used to segment mitochondrial interior volumes and boundaries. Post-processing was performed using both the predicted interior volume and exterior boundary to isolate and reconstruct individual mitochondria. Series of SBEM images from two separate cardiac myocytes were processed. The highest F1-score was 95% using 50 training datasets, greater than that for previously reported automated methods and comparable to manual segmentations. Accuracy of separation of individual mitochondria was 80% on a pixel basis. A total of 2315 mitochondria in the two series of SBEM images were evaluated with a mean volume of 0.78 µm3. The volume distribution was very broad and skewed; the most frequent mitochondria were 0.04-0.06 µm3, but mitochondria larger than 2.0 µm3 accounted for more than 10% of the total number. The average short-axis length was 0.47 µm. Primarily longitudinal mitochondria (0-30 degrees) were dominant (54%). This new automated segmentation and separation method can help quantitate mitochondrial morphology and improve understanding of myocyte structure-function relationships.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Azlne完成签到,获得积分10
12秒前
27秒前
zhjl发布了新的文献求助10
32秒前
38秒前
滕皓轩完成签到 ,获得积分20
39秒前
1分钟前
清脆语海发布了新的文献求助10
1分钟前
李爱国应助清脆语海采纳,获得10
1分钟前
1分钟前
2分钟前
MiaMia应助科研通管家采纳,获得30
2分钟前
科研通AI6应助科研通管家采纳,获得30
2分钟前
2分钟前
香蕉觅云应助zl采纳,获得10
2分钟前
zym完成签到 ,获得积分10
2分钟前
3分钟前
ZYP发布了新的文献求助10
3分钟前
深情安青应助朱羊羊采纳,获得10
3分钟前
3分钟前
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
Criminology34应助科研通管家采纳,获得10
4分钟前
4分钟前
zl发布了新的文献求助10
4分钟前
hhx完成签到,获得积分20
5分钟前
zl完成签到,获得积分10
5分钟前
Wei发布了新的文献求助10
5分钟前
科研通AI6应助曦耀采纳,获得10
6分钟前
小马哥完成签到,获得积分10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
Criminology34应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639719
求助须知:如何正确求助?哪些是违规求助? 4750040
关于积分的说明 15007251
捐赠科研通 4797884
什么是DOI,文献DOI怎么找? 2564024
邀请新用户注册赠送积分活动 1522880
关于科研通互助平台的介绍 1482534