Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis

沃马克 接收机工作特性 骨关节炎 人工智能 医学 射线照相术 卷积神经网络 体质指数 局部二进制模式 计算机科学 放射科 内科学 病理 直方图 图像(数学) 替代医学
作者
Neslihan Bayramoğlu,Miika T. Nieminen,Simo Saarakkala
出处
期刊:International Journal of Medical Informatics [Elsevier BV]
卷期号:157: 104627-104627 被引量:33
标识
DOI:10.1016/j.ijmedinf.2021.104627
摘要

To assess the ability of texture features for detecting radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs. We used lateral view knee radiographs from The Multicenter Osteoarthritis Study (MOST) public use datasets (n = 5507 knees). Patellar region-of-interest (ROI) was automatically detected using landmark detection tool (BoneFinder), and subsequently, these anatomical landmarks were used to extract three different texture ROIs. Hand-crafted features, based on Local Binary Patterns (LBP), were then extracted to describe the patellar texture. First, a machine learning model (Gradient Boosting Machine) was trained to detect radiographic PFOA from the LBP features. Furthermore, we used end-to-end trained deep convolutional neural networks (CNNs) directly on the texture patches for detecting the PFOA. The proposed classification models were eventually compared with more conventional reference models that use clinical assessments and participant characteristics such as age, sex, body mass index (BMI), the total Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and tibiofemoral Kellgren-Lawrence (KL) grade. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC), the area under the precision-recall (PR) curve -average precision (AP)-, and Brier score in the stratified 5-fold cross validation setting. Of the 5507 knees, 953 (17.3%) had PFOA. AUC and AP for the strongest reference model including age, sex, BMI, WOMAC score, and tibiofemoral KL grade to predict PFOA were 0.817 and 0.487, respectively. Textural ROI classification using CNN significantly improved the prediction performance (ROC AUC = 0.889, AP = 0.714). We present the first study that analyses patellar bone texture for diagnosing PFOA. Our results demonstrates the potential of using texture features of patella to predict PFOA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xavier完成签到,获得积分10
1秒前
酷酷语兰完成签到,获得积分10
2秒前
2秒前
tangt完成签到,获得积分10
2秒前
kedaya应助thx采纳,获得40
2秒前
fusheng发布了新的文献求助10
2秒前
王甜甜发布了新的文献求助10
3秒前
柔弱云朵完成签到,获得积分10
3秒前
4秒前
酷波er应助擅长i采纳,获得10
4秒前
4秒前
5秒前
风中的棒棒糖完成签到,获得积分10
6秒前
火星上含芙完成签到 ,获得积分10
7秒前
7秒前
7秒前
8秒前
bkagyin应助拉格朗日柴犬采纳,获得10
8秒前
9秒前
ljx1995完成签到,获得积分20
9秒前
英俊的铭应助DI采纳,获得10
9秒前
9秒前
啊啊啊啊发布了新的文献求助10
10秒前
长街完成签到,获得积分20
11秒前
彭于晏应助1111采纳,获得10
11秒前
量子星尘发布了新的文献求助30
11秒前
林夕发布了新的文献求助10
11秒前
11秒前
雪花发布了新的文献求助10
12秒前
12秒前
汉堡包应助踏实小蘑菇采纳,获得10
13秒前
14秒前
aaaaaa发布了新的文献求助10
14秒前
257发布了新的文献求助10
14秒前
LBX应助吨吨采纳,获得20
14秒前
15秒前
ljljljlj发布了新的文献求助10
17秒前
Ava应助南枳采纳,获得10
17秒前
17秒前
鸣笛应助方圆几里采纳,获得100
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961351
求助须知:如何正确求助?哪些是违规求助? 3507711
关于积分的说明 11137438
捐赠科研通 3240131
什么是DOI,文献DOI怎么找? 1790762
邀请新用户注册赠送积分活动 872504
科研通“疑难数据库(出版商)”最低求助积分说明 803271