Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis

沃马克 接收机工作特性 骨关节炎 人工智能 医学 射线照相术 卷积神经网络 体质指数 局部二进制模式 计算机科学 放射科 内科学 病理 直方图 图像(数学) 替代医学
作者
Neslihan Bayramoğlu,Miika T. Nieminen,Simo Saarakkala
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:157: 104627-104627 被引量:33
标识
DOI:10.1016/j.ijmedinf.2021.104627
摘要

To assess the ability of texture features for detecting radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs. We used lateral view knee radiographs from The Multicenter Osteoarthritis Study (MOST) public use datasets (n = 5507 knees). Patellar region-of-interest (ROI) was automatically detected using landmark detection tool (BoneFinder), and subsequently, these anatomical landmarks were used to extract three different texture ROIs. Hand-crafted features, based on Local Binary Patterns (LBP), were then extracted to describe the patellar texture. First, a machine learning model (Gradient Boosting Machine) was trained to detect radiographic PFOA from the LBP features. Furthermore, we used end-to-end trained deep convolutional neural networks (CNNs) directly on the texture patches for detecting the PFOA. The proposed classification models were eventually compared with more conventional reference models that use clinical assessments and participant characteristics such as age, sex, body mass index (BMI), the total Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and tibiofemoral Kellgren-Lawrence (KL) grade. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC), the area under the precision-recall (PR) curve -average precision (AP)-, and Brier score in the stratified 5-fold cross validation setting. Of the 5507 knees, 953 (17.3%) had PFOA. AUC and AP for the strongest reference model including age, sex, BMI, WOMAC score, and tibiofemoral KL grade to predict PFOA were 0.817 and 0.487, respectively. Textural ROI classification using CNN significantly improved the prediction performance (ROC AUC = 0.889, AP = 0.714). We present the first study that analyses patellar bone texture for diagnosing PFOA. Our results demonstrates the potential of using texture features of patella to predict PFOA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
木子加y完成签到 ,获得积分10
1秒前
小蘑菇应助Sally采纳,获得10
1秒前
命运的X号完成签到,获得积分10
1秒前
yangyong发布了新的文献求助10
2秒前
2秒前
图图烤肉完成签到,获得积分10
3秒前
ajiaxi完成签到,获得积分10
3秒前
Bruce完成签到,获得积分10
4秒前
英俊的水彤完成签到 ,获得积分10
4秒前
刘金金完成签到,获得积分10
5秒前
5秒前
命运的X号发布了新的文献求助10
5秒前
6秒前
HJJHJH发布了新的文献求助10
6秒前
6秒前
爱听歌的电源完成签到,获得积分10
6秒前
善学以致用应助新的心跳采纳,获得10
6秒前
7秒前
陈梦雨发布了新的文献求助10
8秒前
复杂瑛完成签到,获得积分10
8秒前
8秒前
9秒前
眼睛大世开完成签到 ,获得积分10
9秒前
赤邪发布了新的文献求助10
10秒前
安凉完成签到,获得积分10
10秒前
yangyong完成签到,获得积分10
10秒前
zkkz完成签到,获得积分10
10秒前
打打应助橘子采纳,获得40
10秒前
Jasper应助云澈采纳,获得10
10秒前
隐形曼青应助7777777采纳,获得10
10秒前
科研通AI5应助SCI采纳,获得10
11秒前
芋头不秃头完成签到 ,获得积分10
11秒前
11秒前
12秒前
12秒前
kushdw完成签到,获得积分10
13秒前
傲娇小废柴完成签到,获得积分20
14秒前
TranYan发布了新的文献求助10
14秒前
Sally发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794