Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis

沃马克 接收机工作特性 骨关节炎 人工智能 医学 射线照相术 卷积神经网络 体质指数 局部二进制模式 计算机科学 放射科 内科学 病理 直方图 图像(数学) 替代医学
作者
Neslihan Bayramoğlu,Miika T. Nieminen,Simo Saarakkala
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:157: 104627-104627 被引量:33
标识
DOI:10.1016/j.ijmedinf.2021.104627
摘要

To assess the ability of texture features for detecting radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs. We used lateral view knee radiographs from The Multicenter Osteoarthritis Study (MOST) public use datasets (n = 5507 knees). Patellar region-of-interest (ROI) was automatically detected using landmark detection tool (BoneFinder), and subsequently, these anatomical landmarks were used to extract three different texture ROIs. Hand-crafted features, based on Local Binary Patterns (LBP), were then extracted to describe the patellar texture. First, a machine learning model (Gradient Boosting Machine) was trained to detect radiographic PFOA from the LBP features. Furthermore, we used end-to-end trained deep convolutional neural networks (CNNs) directly on the texture patches for detecting the PFOA. The proposed classification models were eventually compared with more conventional reference models that use clinical assessments and participant characteristics such as age, sex, body mass index (BMI), the total Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and tibiofemoral Kellgren-Lawrence (KL) grade. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC), the area under the precision-recall (PR) curve -average precision (AP)-, and Brier score in the stratified 5-fold cross validation setting. Of the 5507 knees, 953 (17.3%) had PFOA. AUC and AP for the strongest reference model including age, sex, BMI, WOMAC score, and tibiofemoral KL grade to predict PFOA were 0.817 and 0.487, respectively. Textural ROI classification using CNN significantly improved the prediction performance (ROC AUC = 0.889, AP = 0.714). We present the first study that analyses patellar bone texture for diagnosing PFOA. Our results demonstrates the potential of using texture features of patella to predict PFOA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
氧化铜发布了新的文献求助10
刚刚
天天快乐应助lgm采纳,获得10
2秒前
充电宝应助ssy采纳,获得10
4秒前
元谷雪应助呆瓜采纳,获得10
4秒前
tzjz_zrz完成签到,获得积分10
5秒前
5秒前
5秒前
乔心完成签到 ,获得积分20
6秒前
7秒前
7秒前
7秒前
Singularity应助孙兆杰采纳,获得10
8秒前
lulu发布了新的文献求助10
8秒前
小犁牛完成签到 ,获得积分10
9秒前
李理发布了新的文献求助10
10秒前
10秒前
10秒前
11完成签到 ,获得积分10
11秒前
读研好难发布了新的文献求助10
11秒前
小赵发布了新的文献求助10
11秒前
11秒前
小晶豆发布了新的文献求助10
11秒前
善学以致用应助ffff采纳,获得10
12秒前
小哲子完成签到,获得积分10
13秒前
微微完成签到 ,获得积分10
13秒前
冲刺的仙人掌完成签到 ,获得积分10
13秒前
喂喂巍发布了新的文献求助10
14秒前
irisjlj发布了新的文献求助10
14秒前
长孙曼香完成签到,获得积分10
15秒前
15秒前
辣椒炒肉发布了新的文献求助10
16秒前
18秒前
18秒前
manman完成签到,获得积分10
18秒前
19秒前
小鹤发布了新的文献求助20
21秒前
ssy发布了新的文献求助10
21秒前
科研通AI2S应助agnes采纳,获得10
22秒前
简让完成签到 ,获得积分10
22秒前
11_aa完成签到,获得积分10
22秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141752
求助须知:如何正确求助?哪些是违规求助? 2792736
关于积分的说明 7804057
捐赠科研通 2449017
什么是DOI,文献DOI怎么找? 1303050
科研通“疑难数据库(出版商)”最低求助积分说明 626718
版权声明 601260