Machine learning based texture analysis of patella from X-rays for detecting patellofemoral osteoarthritis

沃马克 接收机工作特性 骨关节炎 人工智能 医学 射线照相术 卷积神经网络 局部二进制模式 梯度升压 计算机科学 随机森林 放射科 内科学 病理 直方图 替代医学 图像(数学)
作者
Neslihan Bayramog̃lu,Miika T. Nieminen,Simo Saarakkala
出处
期刊:International Journal of Medical Informatics [Elsevier]
卷期号:157: 104627-104627 被引量:47
标识
DOI:10.1016/j.ijmedinf.2021.104627
摘要

To assess the ability of texture features for detecting radiographic patellofemoral osteoarthritis (PFOA) from knee lateral view radiographs.We used lateral view knee radiographs from The Multicenter Osteoarthritis Study (MOST) public use datasets (n = 5507 knees). Patellar region-of-interest (ROI) was automatically detected using landmark detection tool (BoneFinder), and subsequently, these anatomical landmarks were used to extract three different texture ROIs. Hand-crafted features, based on Local Binary Patterns (LBP), were then extracted to describe the patellar texture. First, a machine learning model (Gradient Boosting Machine) was trained to detect radiographic PFOA from the LBP features. Furthermore, we used end-to-end trained deep convolutional neural networks (CNNs) directly on the texture patches for detecting the PFOA. The proposed classification models were eventually compared with more conventional reference models that use clinical assessments and participant characteristics such as age, sex, body mass index (BMI), the total Western Ontario and McMaster Universities Arthritis Index (WOMAC) score, and tibiofemoral Kellgren-Lawrence (KL) grade. Atlas-guided visual assessment of PFOA status by expert readers provided in the MOST public use datasets was used as a classification outcome for the models. Performance of prediction models was assessed using the area under the receiver operating characteristic curve (ROC AUC), the area under the precision-recall (PR) curve -average precision (AP)-, and Brier score in the stratified 5-fold cross validation setting.Of the 5507 knees, 953 (17.3%) had PFOA. AUC and AP for the strongest reference model including age, sex, BMI, WOMAC score, and tibiofemoral KL grade to predict PFOA were 0.817 and 0.487, respectively. Textural ROI classification using CNN significantly improved the prediction performance (ROC AUC = 0.889, AP = 0.714).We present the first study that analyses patellar bone texture for diagnosing PFOA. Our results demonstrates the potential of using texture features of patella to predict PFOA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
迷人的小土豆完成签到,获得积分10
1秒前
多肉丸子完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
11112321321完成签到 ,获得积分10
3秒前
Weilu完成签到 ,获得积分10
4秒前
sunwei完成签到,获得积分10
4秒前
5秒前
双shuang完成签到,获得积分10
5秒前
能干水蓝完成签到,获得积分10
6秒前
康轲完成签到,获得积分0
7秒前
怕触电的电源完成签到 ,获得积分10
7秒前
8秒前
叩叩发布了新的文献求助10
10秒前
如意书桃完成签到 ,获得积分10
10秒前
十五完成签到,获得积分10
12秒前
自信南霜完成签到 ,获得积分10
12秒前
可爱的小福宝完成签到,获得积分10
13秒前
14秒前
14秒前
14秒前
lin完成签到,获得积分10
16秒前
qsmei2020完成签到,获得积分10
16秒前
衢夭发布了新的文献求助10
17秒前
笔记本完成签到,获得积分0
18秒前
wxc完成签到 ,获得积分10
19秒前
科研通AI6应助caixiaoz采纳,获得10
19秒前
19秒前
19秒前
Wicky完成签到 ,获得积分10
20秒前
qin完成签到,获得积分10
20秒前
小杜完成签到,获得积分10
21秒前
超级襄完成签到 ,获得积分10
21秒前
勤奋完成签到 ,获得积分10
21秒前
23秒前
ZYN完成签到 ,获得积分10
23秒前
清新的易真完成签到,获得积分10
23秒前
Xiaoyan完成签到,获得积分10
24秒前
小巧的柚子完成签到,获得积分10
24秒前
keleboys完成签到 ,获得积分10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5651555
求助须知:如何正确求助?哪些是违规求助? 4785100
关于积分的说明 15054111
捐赠科研通 4810151
什么是DOI,文献DOI怎么找? 2572990
邀请新用户注册赠送积分活动 1528919
关于科研通互助平台的介绍 1487917