WePerson: Learning a Generalized Re-identification Model from All-weather Virtual Data

计算机科学 人工智能 机器学习 鉴定(生物学) 数据建模 深度学习 人工神经网络
作者
He Li,Mang Ye,Bo Du
出处
期刊:ACM Multimedia 卷期号:: 3115-3123 被引量:1
标识
DOI:10.1145/3474085.3475455
摘要

The aim of person re-identification (Re-ID) is retrieving a person of interest across multiple non-overlapping cameras. Re-ID has gained significantly increased advancement in recent years. However, real data annotation is costly and model generalization ability is hindered by the lack of large-scale and diverse data. To address this problem, we propose a Weather Person pipeline that can generate a synthesized Re-ID dataset with different weather, scenes, and natural lighting conditions automatically. The pipeline is built on the top of a game engine which contains a digital city, weather and lighting simulation system, and various character models with manifold dressing. To train a generalizable Re-ID model from the large-scale virtual WePerson dataset, we design an adaptive sample selection strategy to close the domain gap and avoid redundancy. We also design an informative sampling method for a mini-batch sampler to accelerate the learning process. In addition, an efficient training method is introduced by adopting instance normalization to capture identity invariant components from various appearances. We evaluate our pipeline using direct transfer on 3 widely-used real-world benchmarks, achieving competitive performance without any real-world image training. This dataset starts the attempt to evaluate diverse environmental factors in a controllable virtual engine, which provides important guidance for future generalizable Re-ID model design. Notably, we improve the current state-of-the-art accuracy from 38.5% to 46.4% on the challenging MSMT17 dataset. Dataset and code are available at https://github.com/lihe404/WePerson https://github.com/lihe404/WePerson.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陆人甲发布了新的文献求助10
1秒前
3秒前
小马甲应助默默的棒棒糖采纳,获得10
3秒前
无误发布了新的文献求助10
4秒前
4秒前
4秒前
金滢发布了新的文献求助10
4秒前
4秒前
一个小柿子完成签到,获得积分10
5秒前
在九月发布了新的文献求助10
6秒前
yyy完成签到,获得积分10
7秒前
7秒前
7秒前
陆人甲完成签到,获得积分10
7秒前
philospipi发布了新的文献求助10
9秒前
9秒前
罗勍完成签到,获得积分10
9秒前
10秒前
shaoshao86完成签到,获得积分10
11秒前
木木发布了新的文献求助10
11秒前
11秒前
NexusExplorer应助杨小六采纳,获得10
11秒前
所所应助ZZ采纳,获得10
12秒前
脑洞疼应助ZZ采纳,获得10
12秒前
思源应助ZZ采纳,获得10
12秒前
CipherSage应助ZZ采纳,获得10
12秒前
CipherSage应助ZZ采纳,获得10
13秒前
FashionBoy应助ZZ采纳,获得10
13秒前
小马甲应助ZZ采纳,获得10
13秒前
可爱的函函应助ZZ采纳,获得10
13秒前
小蘑菇应助ZZ采纳,获得10
13秒前
李爱国应助ZZ采纳,获得10
13秒前
小二郎应助sonic采纳,获得20
14秒前
mandalorian发布了新的文献求助10
15秒前
司空剑封完成签到,获得积分10
15秒前
阿瓦达发布了新的文献求助10
16秒前
清茶淡水完成签到,获得积分10
17秒前
17秒前
上官若男应助木木采纳,获得10
18秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979719
求助须知:如何正确求助?哪些是违规求助? 3523746
关于积分的说明 11218449
捐赠科研通 3261224
什么是DOI,文献DOI怎么找? 1800495
邀请新用户注册赠送积分活动 879113
科研通“疑难数据库(出版商)”最低求助积分说明 807182