WePerson: Learning a Generalized Re-identification Model from All-weather Virtual Data

计算机科学 人工智能 机器学习 鉴定(生物学) 数据建模 深度学习 人工神经网络
作者
He Li,Mang Ye,Bo Du
出处
期刊:ACM Multimedia 卷期号:: 3115-3123 被引量:1
标识
DOI:10.1145/3474085.3475455
摘要

The aim of person re-identification (Re-ID) is retrieving a person of interest across multiple non-overlapping cameras. Re-ID has gained significantly increased advancement in recent years. However, real data annotation is costly and model generalization ability is hindered by the lack of large-scale and diverse data. To address this problem, we propose a Weather Person pipeline that can generate a synthesized Re-ID dataset with different weather, scenes, and natural lighting conditions automatically. The pipeline is built on the top of a game engine which contains a digital city, weather and lighting simulation system, and various character models with manifold dressing. To train a generalizable Re-ID model from the large-scale virtual WePerson dataset, we design an adaptive sample selection strategy to close the domain gap and avoid redundancy. We also design an informative sampling method for a mini-batch sampler to accelerate the learning process. In addition, an efficient training method is introduced by adopting instance normalization to capture identity invariant components from various appearances. We evaluate our pipeline using direct transfer on 3 widely-used real-world benchmarks, achieving competitive performance without any real-world image training. This dataset starts the attempt to evaluate diverse environmental factors in a controllable virtual engine, which provides important guidance for future generalizable Re-ID model design. Notably, we improve the current state-of-the-art accuracy from 38.5% to 46.4% on the challenging MSMT17 dataset. Dataset and code are available at https://github.com/lihe404/WePerson https://github.com/lihe404/WePerson.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
姜文完成签到,获得积分10
1秒前
lvvyy完成签到,获得积分10
2秒前
酷炫的汉堡完成签到,获得积分10
3秒前
3秒前
4秒前
Narnehc发布了新的文献求助10
4秒前
5秒前
潘怡瑶发布了新的文献求助10
7秒前
8秒前
8秒前
萝卜青菜应助一二采纳,获得10
8秒前
小左完成签到,获得积分10
8秒前
mq发布了新的文献求助10
9秒前
苏格拉没有底完成签到,获得积分10
9秒前
SciGPT应助一只呆果蝇采纳,获得10
10秒前
10秒前
ding应助烦烦烦采纳,获得30
10秒前
大道酬勤发布了新的文献求助10
11秒前
11秒前
大胆水杯完成签到,获得积分20
11秒前
隐形曼青应助安谢采纳,获得10
11秒前
splash发布了新的文献求助10
11秒前
完美世界应助随缘采纳,获得10
11秒前
ALmighty完成签到 ,获得积分10
12秒前
学无止境发布了新的文献求助10
13秒前
HONGZHOU完成签到,获得积分10
14秒前
醉山茶完成签到,获得积分10
14秒前
15秒前
15秒前
67完成签到 ,获得积分10
16秒前
潘怡瑶完成签到,获得积分10
16秒前
16秒前
16秒前
orixero应助春日无尾熊采纳,获得20
18秒前
18秒前
18秒前
19秒前
超级蛋挞发布了新的文献求助10
19秒前
liu完成签到 ,获得积分20
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424782
求助须知:如何正确求助?哪些是违规求助? 4539099
关于积分的说明 14165553
捐赠科研通 4456231
什么是DOI,文献DOI怎么找? 2444061
邀请新用户注册赠送积分活动 1435140
关于科研通互助平台的介绍 1412483