WePerson: Learning a Generalized Re-identification Model from All-weather Virtual Data

计算机科学 人工智能 机器学习 鉴定(生物学) 数据建模 深度学习 人工神经网络
作者
He Li,Mang Ye,Bo Du
出处
期刊:ACM Multimedia 卷期号:: 3115-3123 被引量:1
标识
DOI:10.1145/3474085.3475455
摘要

The aim of person re-identification (Re-ID) is retrieving a person of interest across multiple non-overlapping cameras. Re-ID has gained significantly increased advancement in recent years. However, real data annotation is costly and model generalization ability is hindered by the lack of large-scale and diverse data. To address this problem, we propose a Weather Person pipeline that can generate a synthesized Re-ID dataset with different weather, scenes, and natural lighting conditions automatically. The pipeline is built on the top of a game engine which contains a digital city, weather and lighting simulation system, and various character models with manifold dressing. To train a generalizable Re-ID model from the large-scale virtual WePerson dataset, we design an adaptive sample selection strategy to close the domain gap and avoid redundancy. We also design an informative sampling method for a mini-batch sampler to accelerate the learning process. In addition, an efficient training method is introduced by adopting instance normalization to capture identity invariant components from various appearances. We evaluate our pipeline using direct transfer on 3 widely-used real-world benchmarks, achieving competitive performance without any real-world image training. This dataset starts the attempt to evaluate diverse environmental factors in a controllable virtual engine, which provides important guidance for future generalizable Re-ID model design. Notably, we improve the current state-of-the-art accuracy from 38.5% to 46.4% on the challenging MSMT17 dataset. Dataset and code are available at https://github.com/lihe404/WePerson https://github.com/lihe404/WePerson.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
czqjlu完成签到,获得积分10
刚刚
若非菜孰愿弟完成签到,获得积分10
刚刚
1235完成签到,获得积分10
1秒前
咕噜完成签到 ,获得积分10
1秒前
2秒前
浮游应助Mydddg采纳,获得15
2秒前
Hello应助吸墨采纳,获得10
2秒前
2秒前
lv发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
3秒前
4秒前
爱笑访文应助张宇琪采纳,获得10
4秒前
Freedom发布了新的文献求助10
5秒前
6秒前
小倪发布了新的文献求助10
6秒前
6秒前
7秒前
琪凯定理发布了新的文献求助10
7秒前
8秒前
xyt625发布了新的文献求助10
8秒前
无花果应助应寒年采纳,获得10
8秒前
9秒前
BYAUxTNY发布了新的文献求助10
9秒前
9秒前
ggxhygr完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
所所应助aurora采纳,获得10
10秒前
10秒前
NexusExplorer应助heyanan采纳,获得10
10秒前
Akim应助阿航采纳,获得10
10秒前
芒果完成签到,获得积分10
11秒前
Orange应助sightline_heart采纳,获得50
11秒前
李爱国应助小鬼采纳,获得10
11秒前
奶茶菌发布了新的文献求助10
12秒前
初夏发布了新的文献求助10
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4960767
求助须知:如何正确求助?哪些是违规求助? 4221237
关于积分的说明 13146027
捐赠科研通 4004962
什么是DOI,文献DOI怎么找? 2191794
邀请新用户注册赠送积分活动 1205889
关于科研通互助平台的介绍 1116970