WePerson: Learning a Generalized Re-identification Model from All-weather Virtual Data

计算机科学 人工智能 机器学习 鉴定(生物学) 数据建模 深度学习 人工神经网络
作者
He Li,Mang Ye,Bo Du
出处
期刊:ACM Multimedia 卷期号:: 3115-3123 被引量:1
标识
DOI:10.1145/3474085.3475455
摘要

The aim of person re-identification (Re-ID) is retrieving a person of interest across multiple non-overlapping cameras. Re-ID has gained significantly increased advancement in recent years. However, real data annotation is costly and model generalization ability is hindered by the lack of large-scale and diverse data. To address this problem, we propose a Weather Person pipeline that can generate a synthesized Re-ID dataset with different weather, scenes, and natural lighting conditions automatically. The pipeline is built on the top of a game engine which contains a digital city, weather and lighting simulation system, and various character models with manifold dressing. To train a generalizable Re-ID model from the large-scale virtual WePerson dataset, we design an adaptive sample selection strategy to close the domain gap and avoid redundancy. We also design an informative sampling method for a mini-batch sampler to accelerate the learning process. In addition, an efficient training method is introduced by adopting instance normalization to capture identity invariant components from various appearances. We evaluate our pipeline using direct transfer on 3 widely-used real-world benchmarks, achieving competitive performance without any real-world image training. This dataset starts the attempt to evaluate diverse environmental factors in a controllable virtual engine, which provides important guidance for future generalizable Re-ID model design. Notably, we improve the current state-of-the-art accuracy from 38.5% to 46.4% on the challenging MSMT17 dataset. Dataset and code are available at https://github.com/lihe404/WePerson https://github.com/lihe404/WePerson.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vince发布了新的文献求助10
刚刚
刚刚
一方通行发布了新的文献求助10
刚刚
升升升呀发布了新的文献求助30
刚刚
想啊想发布了新的文献求助10
1秒前
细心的雪晴完成签到,获得积分20
1秒前
小二郎应助王王碎冰冰采纳,获得10
1秒前
1秒前
1秒前
3秒前
Ulrica完成签到,获得积分10
3秒前
3秒前
虞美人发布了新的文献求助10
3秒前
周灿灿完成签到,获得积分10
4秒前
研友_nv4M28完成签到,获得积分0
4秒前
qwe完成签到,获得积分10
4秒前
ddy完成签到,获得积分10
4秒前
4秒前
雨醉东风完成签到,获得积分10
4秒前
充电宝应助sm采纳,获得10
4秒前
4秒前
arizaki7应助玩命的兔子采纳,获得10
4秒前
科研通AI6应助smile采纳,获得10
4秒前
小马甲应助fffff采纳,获得10
4秒前
淡淡翠曼给突突突的求助进行了留言
4秒前
1111完成签到,获得积分20
5秒前
英勇映波发布了新的文献求助10
5秒前
文献搜索小能手完成签到,获得积分10
5秒前
小小完成签到,获得积分10
5秒前
ZYH关闭了ZYH文献求助
5秒前
打打应助高贵的小熊猫采纳,获得10
6秒前
大乐发布了新的文献求助10
6秒前
独特的梦菲完成签到,获得积分10
6秒前
666JACS发布了新的文献求助10
6秒前
6秒前
7秒前
小蘑菇应助MXL采纳,获得10
7秒前
科研通AI6应助MRM采纳,获得10
7秒前
科研通AI6应助玛卡巴卡31采纳,获得10
8秒前
小马甲应助缓慢天菱采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546187
求助须知:如何正确求助?哪些是违规求助? 4631987
关于积分的说明 14624329
捐赠科研通 4573690
什么是DOI,文献DOI怎么找? 2507760
邀请新用户注册赠送积分活动 1484385
关于科研通互助平台的介绍 1455688