材料科学
富勒烯
三元运算
有机太阳能电池
能量转换效率
接受者
串联
相(物质)
光电流
光电子学
开路电压
化学工程
分析化学(期刊)
电压
有机化学
聚合物
化学
复合材料
程序设计语言
凝聚态物理
工程类
物理
量子力学
计算机科学
作者
Yunhao Cai,Yun Li,Rui Wang,Hongbo Wu,Zhihao Chen,Jie Zhang,Zaifei Ma,Xiaotao Hao,Yong Zhao,Chunfeng Zhang,Fei Huang,Yanming Sun
标识
DOI:10.1002/adma.202101733
摘要
Abstract The ternary strategy, introducing a third component into a binary blend, opens a simple and promising avenue to improve the power conversion efficiency (PCE) of organic solar cells (OSCs). The judicious selection of an appropriate third component, without sacrificing the photocurrent and voltage output of the OSC, is of significant importance in ternary devices. Herein, highly efficient OSCs fabricated using a ternary approach are demonstrated, wherein a novel non‐fullerene acceptor L8‐BO‐F is designed and incorporated into the PM6:BTP‐eC9 blend. The three components show complementary absorption spectra and cascade energy alignment. L8‐BO‐F and BTP‐eC9 are found to form a homogeneous mixed phase, which improves the molecular packing of both the donor and acceptor materials, and optimizes the ternary blend morphology. Moreover, the addition of L8‐BO‐F into the binary blend suppresses the non‐radiative recombination, thus leading to a reduced voltage loss. Consequently, concurrent increases in open‐circuit voltage, short‐circuit current, and fill factor are realized, resulting in an unprecedented PCE of 18.66% (certified value of 18.2%), which represents the highest efficiency values reported for both single‐junction and tandem OSCs so far.
科研通智能强力驱动
Strongly Powered by AbleSci AI