已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine

遥感 水田 物候学 像素 环境科学 计算机科学 地图学 人工智能 地理 农学 生物
作者
Rongguang Ni,Jinyan Tian,Xiaojuan Li,Dameng Yin,Jiwei Li,Huili Gong,Jie Zhang,Lin Zhu,Dongli Wu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:178: 282-296 被引量:103
标识
DOI:10.1016/j.isprsjprs.2021.06.018
摘要

Accurate paddy rice mapping with remote sensing at a regional scale plays critical roles in agriculture and ecology. Previous studies mainly employed a single key phenological period (i.e., transplanting) for paddy rice mapping. However, the prominent poor spectral separability between paddy rice and others (e.g., wetland vegetation) exists in this period. To this end, we developed an enhanced pixel-based phenological feature composite method (Eppf-CM). Subsequently, the feature derived from Eppf-CM was served as the input data to a one-class classifier (One-Class Support Vector Machine, OCSVM). Eppf-CM includes two steps: (1) four distinctive phenological periods, specifically designed for rice mapping, were identified by time-series analysis of Sentinel-2 imagery. (2) We strived to choose one or two vegetation indices for each phenological period, and then stacking all the indices together. The new developed paddy rice mapping method with Eppf-CM and OCSVM is low costs and high precision. To fully demonstrate the outstanding precision of Eppf-CM based paddy rice map (Eppf map) in this study, three different sources of reference data were employed for comparison purposes. Compared with the field survey data, Eppf map achieved an overall accuracy higher than 0.98. The paddy rice area in Northeast China from Eppf map is only 1.86% less than that of the National Bureau of Statistics in 2019. Compared with a latest paddy rice map at the same spatial resolution (10-m), Eppf map significantly reduced commission and omission errors. To the best of our knowledge, the Eppf-CM has obtained one of the highest accuracy rice maps in Northeast China up-to-date. As a whole, we expect that: (1) Eppf-CM will advance the phenology-based agricultural remote sensing mapping method. (2) The paddy rice map will provide a new baseline data for the study of agriculture and ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
搜集达人应助LDY采纳,获得10
5秒前
共享精神应助棠梨煎雪采纳,获得10
5秒前
accept完成签到,获得积分10
5秒前
小熊5号完成签到,获得积分10
8秒前
Sheng完成签到 ,获得积分10
9秒前
loga80完成签到,获得积分0
11秒前
卷卷完成签到 ,获得积分10
11秒前
hhxx完成签到,获得积分10
11秒前
12秒前
贾jia完成签到,获得积分10
13秒前
13秒前
16秒前
棠梨煎雪发布了新的文献求助10
18秒前
小熊5号发布了新的文献求助30
19秒前
自然惜灵完成签到 ,获得积分10
21秒前
21秒前
ccc完成签到,获得积分10
22秒前
22秒前
唐宋八大家完成签到,获得积分10
23秒前
26秒前
26秒前
刘田完成签到 ,获得积分10
27秒前
YUU发布了新的文献求助10
27秒前
完美世界应助科研通管家采纳,获得10
28秒前
传奇3应助科研通管家采纳,获得10
28秒前
深情安青应助科研通管家采纳,获得10
28秒前
Akim应助科研通管家采纳,获得10
28秒前
科研通AI2S应助科研通管家采纳,获得10
28秒前
彭于晏应助科研通管家采纳,获得10
28秒前
28秒前
彭于晏应助文静翅膀采纳,获得10
28秒前
32秒前
今后应助直率的钢铁侠采纳,获得10
33秒前
徒tu完成签到,获得积分20
34秒前
文刀大可完成签到 ,获得积分10
37秒前
37秒前
李健的小迷弟应助温温采纳,获得10
39秒前
40秒前
40秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Pearson Edxecel IGCSE English Language B 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142320
求助须知:如何正确求助?哪些是违规求助? 2793260
关于积分的说明 7806108
捐赠科研通 2449516
什么是DOI,文献DOI怎么找? 1303345
科研通“疑难数据库(出版商)”最低求助积分说明 626823
版权声明 601300