An enhanced pixel-based phenological feature for accurate paddy rice mapping with Sentinel-2 imagery in Google Earth Engine

遥感 水田 物候学 像素 环境科学 计算机科学 地图学 人工智能 地理 农学 生物
作者
Rongguang Ni,Jinyan Tian,Xiaojuan Li,Dameng Yin,Jiwei Li,Huili Gong,Jie Zhang,Lin Zhu,Dongli Wu
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:178: 282-296 被引量:82
标识
DOI:10.1016/j.isprsjprs.2021.06.018
摘要

Accurate paddy rice mapping with remote sensing at a regional scale plays critical roles in agriculture and ecology. Previous studies mainly employed a single key phenological period (i.e., transplanting) for paddy rice mapping. However, the prominent poor spectral separability between paddy rice and others (e.g., wetland vegetation) exists in this period. To this end, we developed an enhanced pixel-based phenological feature composite method (Eppf-CM). Subsequently, the feature derived from Eppf-CM was served as the input data to a one-class classifier (One-Class Support Vector Machine, OCSVM). Eppf-CM includes two steps: (1) four distinctive phenological periods, specifically designed for rice mapping, were identified by time-series analysis of Sentinel-2 imagery. (2) We strived to choose one or two vegetation indices for each phenological period, and then stacking all the indices together. The new developed paddy rice mapping method with Eppf-CM and OCSVM is low costs and high precision. To fully demonstrate the outstanding precision of Eppf-CM based paddy rice map (Eppf map) in this study, three different sources of reference data were employed for comparison purposes. Compared with the field survey data, Eppf map achieved an overall accuracy higher than 0.98. The paddy rice area in Northeast China from Eppf map is only 1.86% less than that of the National Bureau of Statistics in 2019. Compared with a latest paddy rice map at the same spatial resolution (10-m), Eppf map significantly reduced commission and omission errors. To the best of our knowledge, the Eppf-CM has obtained one of the highest accuracy rice maps in Northeast China up-to-date. As a whole, we expect that: (1) Eppf-CM will advance the phenology-based agricultural remote sensing mapping method. (2) The paddy rice map will provide a new baseline data for the study of agriculture and ecology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圣君天穹完成签到,获得积分10
刚刚
1秒前
NOV完成签到,获得积分10
1秒前
哈哈哈完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
zxvcbnm发布了新的文献求助10
1秒前
2秒前
2秒前
小刘不笨完成签到,获得积分20
2秒前
3秒前
3秒前
YungCHien完成签到,获得积分10
3秒前
NexusExplorer应助xuxuxu采纳,获得10
3秒前
eugene_sysu发布了新的文献求助10
4秒前
潘继坤发布了新的文献求助10
4秒前
fsdf完成签到,获得积分20
4秒前
练习者发布了新的文献求助10
5秒前
Ori发布了新的文献求助10
5秒前
2113发布了新的文献求助10
5秒前
乐乐应助冰棍采纳,获得10
6秒前
何小龙发布了新的文献求助10
6秒前
charlins发布了新的文献求助30
7秒前
7秒前
7秒前
大个应助潘继坤采纳,获得10
8秒前
8秒前
9秒前
共享精神应助阿翡呐采纳,获得10
10秒前
单薄千青完成签到,获得积分10
10秒前
LL发布了新的文献求助10
10秒前
10秒前
11秒前
张世瑞发布了新的文献求助10
12秒前
9xixixixixixixi完成签到,获得积分10
12秒前
Sievi发布了新的文献求助10
12秒前
给苏打饼干扎眼完成签到,获得积分10
13秒前
悠扬完成签到,获得积分10
14秒前
搜集达人应助eugene_sysu采纳,获得10
14秒前
高分求助中
Sustainability in Tides Chemistry 2000
The ACS Guide to Scholarly Communication 2000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Pharmacogenomics: Applications to Patient Care, Third Edition 800
Ожившие листья и блуждающие цветы. Практическое руководство по содержанию богомолов [Alive leaves and wandering flowers. A practical guide for keeping praying mantises] 500
A Dissection Guide & Atlas to the Rabbit 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3079871
求助须知:如何正确求助?哪些是违规求助? 2732588
关于积分的说明 7524713
捐赠科研通 2381420
什么是DOI,文献DOI怎么找? 1262876
科研通“疑难数据库(出版商)”最低求助积分说明 612123
版权声明 597460