Artificial Intelligence for Interstitial Lung Disease Analysis on Chest Computed Tomography: A Systematic Review

医学 间质性肺病 放射科 特发性肺纤维化 检查表 梅德林 高分辨率计算机断层扫描 医学物理学 人工智能 计算机断层摄影术 计算机科学 内科学 认知心理学 法学 心理学 政治学
作者
Shelly Soffer,Adam S. Morgenthau,Orit Shimon,Yiftach Barash,Eli Konen,Benjamin S. Glicksberg,Eyal Klang
出处
期刊:Academic Radiology [Elsevier]
卷期号:29: S226-S235 被引量:42
标识
DOI:10.1016/j.acra.2021.05.014
摘要

Rationale and Objectives

High-resolution computed tomography (HRCT) is paramount in the assessment of interstitial lung disease (ILD). Yet, HRCT interpretation of ILDs may be hampered by inter- and intra-observer variability. Recently, artificial intelligence (AI) has revolutionized medical image analysis. This technology has the potential to advance patient care in ILD. We aimed to systematically evaluate the application of AI for the analysis of ILD in HRCT.

Materials and Methods

We searched MEDLINE/PubMed databases for original publications of deep learning for ILD analysis on chest CT. The search included studies published up to March 1, 2021. The risk of bias evaluation included tailored Quality Assessment of Diagnostic Accuracy Studies and the modified Joanna Briggs Institute Critical Appraisal checklist.

Results

Data was extracted from 19 retrospective studies. Deep learning techniques included detection, segmentation, and classification of ILD on HRCT. Most studies focused on the classification of ILD into different morphological patterns. Accuracies of 78%-91% were achieved. Two studies demonstrated near-expert performance for the diagnosis of idiopathic pulmonary fibrosis (IPF). The Quality Assessment of Diagnostic Accuracy Studies tool identified a high risk of bias in 15/19 (78.9%) of the studies.

Conclusion

AI has the potential to contribute to the radiologic diagnosis and classification of ILD. However, the accuracy performance is still not satisfactory, and research is limited by a small number of retrospective studies. Hence, the existing published data may not be sufficiently reliable. Only well-designed prospective controlled studies can accurately assess the value of existing AI tools for ILD evaluation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
球球完成签到,获得积分20
1秒前
1秒前
来碗米饭发布了新的文献求助10
1秒前
科研通AI2S应助Qiu采纳,获得10
2秒前
2秒前
2秒前
默默完成签到,获得积分10
3秒前
xiaxiao完成签到,获得积分0
4秒前
万能图书馆应助会飞的云采纳,获得10
7秒前
博林大师发布了新的文献求助10
7秒前
mmssdd发布了新的文献求助10
8秒前
annielam完成签到,获得积分10
9秒前
9秒前
默默诗云完成签到,获得积分10
10秒前
10秒前
10秒前
妮妮完成签到 ,获得积分10
11秒前
joe发布了新的文献求助10
12秒前
科研通AI2S应助娇气的代曼采纳,获得30
13秒前
悠悠发布了新的文献求助10
13秒前
宵荷关注了科研通微信公众号
14秒前
14秒前
Lucas应助YY采纳,获得10
15秒前
15秒前
Ykx发布了新的文献求助10
15秒前
传奇3应助西西采纳,获得10
17秒前
17秒前
赵赵完成签到,获得积分10
18秒前
18秒前
yh完成签到,获得积分10
19秒前
20秒前
乐观明雪发布了新的文献求助10
21秒前
NexusExplorer应助斯文的傲珊采纳,获得10
21秒前
深情安青应助zhf采纳,获得10
21秒前
赵赵发布了新的文献求助20
21秒前
思源应助孙亦沈采纳,获得10
22秒前
Ykx完成签到,获得积分10
23秒前
丘比特应助Momo采纳,获得10
23秒前
阿北完成签到 ,获得积分10
23秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145145
求助须知:如何正确求助?哪些是违规求助? 2796529
关于积分的说明 7820187
捐赠科研通 2452829
什么是DOI,文献DOI怎么找? 1305278
科研通“疑难数据库(出版商)”最低求助积分说明 627448
版权声明 601449