Diagnostic performance of diffusion tensor imaging for preo- perative glioma grading.

医学 胶质瘤 磁共振弥散成像 接收机工作特性 分级(工程) 白质 核医学 磁共振成像 部分各向异性 曲线下面积 肿瘤分级 放射科 病理 内科学 免疫组织化学 工程类 土木工程 癌症研究
作者
Nguyen Duy Hung,Nguyen Minh Duc,Nguyen Thanh Van Anh,Le Thanh Dung,D V He
出处
期刊:PubMed 卷期号:172 (4): 315-321 被引量:1
标识
DOI:10.7417/ct.2021.2335
摘要

This study aimed to determine the diagnostic per-formance of fractional anisotropy (FA) and mean diffusivity (MD) values for glioma grading.The tMD, rMDt/w, and rFAp/w values represent useful indices for the differentiation between LGG and HGG. The combination of these indices can improve diagnostic specificity.A total of 42 patients who underwent biopsy or surge-ry and were histologically diagnosed with glioma from September 2019 to December 2020 were enrolled in this retrospective study. Diffusion tensor imaging (DTI) and conventional magnetic resonance imaging (MRI) were performed preoperatively using 3 Tesla MRI in all cases. The FA and MD values were measured in the solid portion of the tumor, the peritumoral area, and the normal white matter. The diagnostic performances of the absolute and relative FA and MD values for glioma grading were analyzed using the receiver operating characteristic (ROC) curve.The MD value in the solid portion of the tumor (tMD), the MD value of the solid portion of the tumor relative to that in the normal white matter (rMDt/w), and the FA value for the peritumoral region relative to that of the normal white matter (rFAp/w) showed significant differences between the low-grade (LGG) and high-grade glioma (HGG) groups. The combination of these three parameters provided the largest area under the curve value of 89% with sensitivity, specificity, accuracy, negative predictive, and positive predictive values of 72%, 100%, 81%, 62%, and 100%, respectively, for distinguishing between the LGG and HGG groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助海棠yiyi采纳,获得50
1秒前
Khr1stINK发布了新的文献求助10
1秒前
1秒前
脑洞疼应助卡卡采纳,获得10
1秒前
1秒前
Rrr发布了新的文献求助10
2秒前
科研通AI5应助zmy采纳,获得10
3秒前
William鉴哲发布了新的文献求助10
3秒前
情怀应助只道寻常采纳,获得10
4秒前
4秒前
cyy完成签到,获得积分20
4秒前
orixero应助小庄采纳,获得10
5秒前
6秒前
侦察兵发布了新的文献求助10
6秒前
司徒元瑶完成签到 ,获得积分10
6秒前
梓榆发布了新的文献求助10
6秒前
6秒前
sweetbearm应助通~采纳,获得10
6秒前
斯文败类应助成就映秋采纳,获得10
7秒前
123456完成签到,获得积分10
7秒前
7秒前
moonlin完成签到 ,获得积分10
7秒前
8秒前
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
10秒前
wanci应助科研通管家采纳,获得10
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
思源应助蟹黄堡不打折采纳,获得10
10秒前
Lily应助科研通管家采纳,获得40
10秒前
敬老院N号应助科研通管家采纳,获得30
10秒前
zzzq应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
天天快乐应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
皮皮完成签到 ,获得积分10
10秒前
sallltyyy发布了新的文献求助10
10秒前
10秒前
研友_VZG7GZ应助科研通管家采纳,获得10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794